图像处理基础——频域、时域

下图是低通滤波器的频率响应曲线

低通滤波器频响曲线

横轴是频率(Hz),纵轴是声音大小(dB)。(请忽略图中的频率刻度,没有对应人声的频率范围)

所谓的低音效果,其实就是对人声中的低音部分保留或增强,对应上图中左侧的横线部分;而对于人声中的高音部分进行衰减,对应上图中右侧的斜坡部分。通过这个低通滤波器,我们就能将低音过滤,将高音衰减。为了实现更好的视听效果,实际中,功放或播放器的实现会比这个复杂得多,上图中进行了极简化。

可见,低音效果是在频率范围内考虑问题,而波形图是在时域内的图像,所以如果想在时域内解决低音效果的问题,就如同鸡同鸭讲。所以我们要就要找到一个沟通时域和频域的桥梁,也就是一个翻译,让时域和频域能够无障碍的沟通。但是,时域和频域表达的又只能是同一种信息,只是表现形式不同。

时域转频域

极坐标与直角坐标系类比

前面类比了RGB空间,解释了为什么要进行时域到频域的转换。可能还不够形象,这里再用直角坐标系和极坐标系做一个类比。

我们来看一下阿基米德螺线(如下图),当一点P沿动射线OP以等速率向外运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为"阿基米德螺线"。它的极坐标方程为: 。这种螺线的每条臂的间距永远相等于 2b 。

这种曲线在极坐标系中很容易的表示出来,而且形式非常简单优雅。但是在直角坐标系下要以X-Y的形式表示出来确是非常困难的,只能用参数化方程来表示。也就是说,有些问题,当我们换一个空间或者说域去考虑的时候,可能会豁然开朗。

傅里叶级数

为了形象的理解为什么要进行时域到频域的转换,前面已经举了很多的例子,下面正式开始进入时域和频域的变换。我们先来看一下标准正弦函数,如下图。

magnitude 英/ˈmæɡnɪtjuːd/ n.巨大,重要性;震级;规模,大小;数量,数值;(恒星的)亮度,星等

傅里叶分析

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

一、什么是频域 时域

时域是信号在时间轴随时间变化的总体概括;频域是把时域波形的表达式做傅立叶等变化得到复频域的表达式,所画出的波形就是频谱图,是描述频率变化和幅度变化的关系。

示波器用来看时域内容,频普仪用来看频域内容。
时域:

时间域,time domain。自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x (t ) 是描述信号在不同时刻取值的函数。
频域:

频率域,frequency domain。自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。

时域分析与频域分析:

对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域,主要通过傅立叶级数和傅立叶变换等来实现。很简单,时域分析的函数是参数是t ,也就是y =f (t );频域分析时,参数是w ,也就是y =F (w ) 两者之间可以互相转化。时域函数通过傅立叶或者拉普拉斯变换就变成了频域函数

傅里叶告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。

二、傅里叶级数(Fourier Series)的频谱

正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆。

Fourier series square wave circles animation 傅里叶级数方波圆动画

Fourier series sawtooth wave circles animatio 傅立叶级数锯齿波圆动画

介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:

这是什么奇怪的东西?

这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是------

再清楚一点:

可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。

从时域来看,会看到一个近似为矩形的波,这个矩形的波可以被拆分为一些正弦波的叠加。

从频域方向来看,就看到了每一个正弦波的幅值,可以发现,在频谱中,偶数项的振幅都是0。也就对应了图中的彩色直线,振幅为0的正弦波。下图展示了频域图像:

Fourier series and transform 傅里叶级数及其变换

想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?

三、傅里叶级数(Fourier Series)的相位谱

频谱只代表了一个正弦函数的幅值,还需要相位,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。

所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

再说一个更重要,但是稍微复杂一点的用途------求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

继续说相位谱:

通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位 。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰 ,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。

这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。

在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。

注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。

最后来一张大集合:

四、傅里叶变换(Fourier Tranformation)

傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。

傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。

算了,还是上一张图方便大家理解吧:

或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。

所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。

因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?

从频率较高的方向看。

以上是离散谱,那么连续谱是什么样子呢?

尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续......直到变得像波涛起伏的大海:

很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。

不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。

五、 欧拉公式

虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1 的平方根,可是它真正的意义是什么呢?

这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以 3 的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1 的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了 180 度。

我们知道乘-1 其实就是乘了两次 i 使线段旋转了 180 度,那么乘一次 i 呢------答案很简单------旋转了 90 度。

同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能------旋转。

现在,就有请宇宙第一耍帅公式欧拉公式隆重登场------

这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一公式是因为它的特殊形式------当x等于 Pi 的时候。

这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:

欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。

关于复数更深的理解,大家可以参考:
复数的物理意义是什么?

六、指数形式的傅里叶变换

有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?

光波

高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:

所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。

但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。

这里,我们可以用两种方法来理解正弦波:

第一种前面已经讲过了,就是螺旋线在实轴的投影。

另一种需要借助欧拉公式的另一种形式去理解:

将以上两式相加再除2,得到:

这个式子可以怎么理解呢?

我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。

好了,刚才我们已经看到了大海------连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:

是不是很漂亮?

你猜猜,这个图形在时域是什么样子?

哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。

顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。

如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。

好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:

展示了将海螺图投影到实数空间就形成了傅立叶变换的连续非周期的连续的曲线,此曲线在时域上就表现为一个矩形波的形式。

到这里可以直观的理解傅立叶级数和傅立叶变换,傅立叶级数是说周期性变换的函数可以用有限个正弦波叠加而来,傅立叶变换说非周期变换的函数也可以用连续的正弦波来模拟,也了解了在复平面、频域和时域上傅立叶变换的效果。

相关推荐
eric-sjq20 分钟前
基于xiaothink对Wanyv-50M模型进行c-eval评估
人工智能·python·语言模型·自然语言处理·github
是十一月末31 分钟前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
工业互联网专业34 分钟前
基于OpenCV和Python的人脸识别系统_django
人工智能·python·opencv·django·毕业设计·源码·课程设计
ai产品老杨1 小时前
报警推送消息升级的名厨亮灶开源了。
vue.js·人工智能·安全·开源·音视频
智源研究院官方账号1 小时前
智源研究院与安谋科技达成战略合作,共建开源AI“芯”生态
人工智能·开源
积兆科技1 小时前
从汽车企业案例看仓网规划的关键步骤(视频版)
人工智能·算法·汽车·制造
Robot2511 小时前
「地平线」副总裁余轶南与「理想汽车」智驾产品总监赵哲伦联手创业,入局具身智能赛道!
大数据·人工智能·机器人·汽车
智能汽车人1 小时前
行业分析---造车新势力之零跑汽车
人工智能·自动驾驶·汽车
山顶夕景2 小时前
【ML】机器学习中常见的25个数学公式
人工智能·数学·机器学习
Zik----2 小时前
Anaconda搭建Python虚拟环境并在Pycharm中配置(小白也能懂)
开发语言·人工智能·python·机器学习·pycharm