1.2 在卷积神经网络中,如何计算各层感受野的大小

1.2 在卷积神经网络中,如何计算各层感受野的大小

分析与解答:

在卷积神经网络中,由于卷积的局部连接性,输出特征图上的每个节点的取值,是由卷积核在输入特征图对应位置的局部区域内进行卷积而得到的,因此这个节点的取值会受到该卷积层的输入特征图,也就是上一层的输出特征图上的某个局部区域内的值的影响,而上一层的输出特征图上的每一点的值亦会受到上上一层某个区域的影响。

感受野的定义:对于某层输出特征图上的某个点,在卷积神经网络的原始输入数据上能影响到这个点的取值的区域。

感受野的计算 :计算什么层的感受野,方法不一样。

图1.4是感受野的简单示意图,可以看到,当第i-1层和第i-2层的卷积核大小为3×3、步长为1时,则第i层在第i-2层上的感受野大小为5×5。若想进一步计算第i层在原始输入数据上的感受野大小,则还需要知道前面所有层的信息(如卷积核大小、步长等)。

我原来写过关于感受野计算的简要介绍,主要是针对求卷积层/池化层的感受野,链接如下:

https://blog.csdn.net/seasonsyy/article/details/132816967
参考文献:

《百面深度学习》 诸葛越 江云胜主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-53097-4

2020年7月第1版(2020年7月北京第二次印刷)

相关推荐
cxr8281 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡1 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成2 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃2 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)2 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao2 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383922 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI3 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿3 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV3 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer