关于MediaEval数据集的Dataset构建(Text部分-使用PLM BERT)

python 复制代码
import random
import numpy as np
import pandas as pd
import torch
from transformers import BertModel,BertTokenizer
from tqdm.auto import tqdm
from torch.utils.data import Dataset
import re
"""参考Game-On论文"""
"""util.py"""
def set_seed(seed_value=42):
    random.seed(seed_value)
    np.random.seed(seed_value)
    # 用于设置生成随机数的种子
    torch.manual_seed(seed_value)
    torch.cuda.manual_seed_all(seed_value)
"""util.py"""

"""文本预处理-textGraph.py"""
# 文本DataSet类

def text_preprocessing(text):
    """
    - Remove entity mentions (eg. '@united')
    - Correct errors (eg. '&' to '&')
    @param    text (str): a string to be processed.
    @return   text (Str): the processed string.
    """
    # Remove '@name'
    text = re.sub(r'(@.*?)[\s]', ' ', text)

    # Replace '&' with '&'
    text = re.sub(r'&', '&', text)

    # Remove trailing whitespace
    text = re.sub(r'\s+', ' ', text).strip()

    # removes links
    text = re.sub(r'(?P<url>https?://[^\s]+)', r'', text)

    # remove @usernames
    text = re.sub(r"\@(\w+)", "", text)

    # remove # from #tags
    text = text.replace('#', '')

    return text

class TextDataset(Dataset):
    def __init__(self,df,tokenizer):
        # 包含推文的主文件框架
        self.df = df.reset_index(drop=True)

        # 使用的分词器
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()
        # 帖子的文本内容
        text = self.df['tweetText'][idx]
        # 作为唯一标识符的id 'tweetId'
        unique_id = self.df['tweetId'][idx]

        # 创建一个空的列表来存储输出结果
        input_ids = []
        attention_mask = []
        # 使用tokenizer分词器
        encoded_sent = self.tokenizer.encode_plus(
            text = text_preprocessing(text), # 这里使用的是预处理的句子,而不是直接对原句子使用tokenizer
            add_special_tokens=True,        # 添加[CLS]以及[SEP]等特殊词元
            max_length=512,                 # 最大截断长度
            padding='max_length',            # padding的最大长度
            return_attention_mask=True,     # 返回attention_mask
            truncation=True                 #
        )
        # 获取编码效果
        input_ids = encoded_sent.get('input_ids')
        # 获取attention_mask结果
        attention_mask = encoded_sent.get('attention_mask')

        # 将列表转换成张量
        input_ids = torch.tensor(input_ids)
        attention_mask =torch.tensor(attention_mask)

        return {'input_ids':input_ids,'attention_mask':attention_mask,'unique_id':unique_id}

def store_data(bert,device,df,dataset,store_dir):
    lengths = []
    bert.eval()

    for idx in tqdm(range(len(df))):
        sample = dataset.__getitem__(idx)
        print('原始sample[input_ids]和sample[attention_mask]的维度:',sample['input_ids'].shape,sample['attention_mask'].shape)
        # 升维
        input_ids,attention_mask = sample['input_ids'].unsqueeze(0),sample['attention_mask'].unsqueeze(0)
        input_ids = input_ids.to(device)
        attention_mask = attention_mask.to(device)
        # 得到唯一标识属性
        unique_id = sample['unique_id']

        # 计算token的个数
        num_tokens = attention_mask.sum().detach().cpu().item()
        """不生成新的计算图,而是只做权重更新"""
        with torch.no_grad():
            out = bert(input_ids=input_ids,attention_mask=attention_mask)
        # last_hidden_state.shape是(batch_size,sequence_length,hidden_size)
        out_tokens = out.last_hidden_state[:,1:num_tokens,:].detach().cpu().squeeze(0).numpy() # token向量

        # 保存token级别表示
        filename = f'{emed_dir}{unique_id}.npy'

        try:
            np.save(filename, out_tokens)
            print(f"文件{filename}保存成功")
        except FileNotFoundError:
            # 文件不存在,创建新文件并保存
            np.save(filename, out_tokens)
            print(f"文件{filename}创建成功并保存成功")
        lengths.append(num_tokens)

        ## Save semantic/ whole text representation
        # 保存语义  也就是整个文本的表示
        out_cls = out.last_hidden_state[:,0,:].unsqueeze(0).detach().cpu().squeeze(0).numpy() ## cls vector
        filename = f'{emed_dir}{unique_id}_full_text.npy'
        # 尝试保存.npy文件,如果文件不存在则自动创建
        try:
            np.save(filename, out_cls)
            print(f"文件{filename}保存成功")
        except FileNotFoundError:
            # 文件不存在,创建新文件并保存
            np.save(filename, out_cls)
            print(f"文件{filename}创建成功并保存成功")
    return lengths

if __name__=='__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # 根目录
    root_dir = "./dataset/image-verification-corpus-master/image-verification-corpus-master/mediaeval2015/"
    emed_dir = './Embedding_File'
    # 文件路径
    train_csv_name = "tweetsTrain.csv"
    test_csv_name = "tweetsTest.csv"

    # 加载PLM和分词器
    tokenizer = BertTokenizer.from_pretrained('./bert/')
    bert = BertModel.from_pretrained('./bert/', return_dict=True)
    bert = bert.to(device)

    # 用于存储每个推文的Embedding
    store_dir ="Embed_Post/"

    # 创建训练数据集的Embedding表示
    df_train = pd.read_csv(f'{root_dir}{train_csv_name}')
    df_train = df_train.dropna().reset_index(drop=True)

    # 训练数据集的编码结果
    train_dataset = TextDataset(df_train,tokenizer)
    lengths = store_data(bert, device, df_train, train_dataset, store_dir)

    ## Create graph data for testing set
    # 为测试集创建Embedding表示
    df_test = pd.read_csv(f'{root_dir}{test_csv_name}')
    df_test = df_test.dropna().reset_index(drop=True)
    test_dataset = TextDataset(df_test, tokenizer)

    lengths = store_data(bert, device, df_test, test_dataset, store_dir)

"""文本预处理-textGraph.py"""
相关推荐
wangyue415 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试28 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀36 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan37 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀41 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测