Kaggle Intermediate ML Part Four——Cross-Validation

What is it?

Cross-validation is a technique used to evaluate the generalizability of a machine learning model. In simpler terms, it helps you understand how well your model will perform on unseen data, which is crucial for real-world applications.

Here's how it works:

  1. Split the data: Your original dataset is divided into folds (usually equally sized).
  2. Train-Test Split: In each fold, one fold is kept for testing (hold-out set), while the remaining folds are used for training the model.
  3. Evaluate and Repeat: The model is trained on the training data and evaluated on the hold-out set. This process is repeated for each fold, ensuring every data point is used for both training and testing.
  4. Combine and Analyze: The performance metrics (e.g., accuracy, precision, recall) from each fold are combined to get an overall estimate of the model's performance on unseen data.

Common Cross-Validation Techniques:

  • K-Fold Cross-validation: The data is split into k folds, and the training-testing process is repeated k times.
  • Stratified K-Fold: Similar to k-fold, but ensures each fold has a similar distribution of class labels (important for imbalanced datasets).
  • Leave-One-Out Cross-validation (LOOCV): Each data point is used as the testing set once, while all other points are used for training. This is computationally expensive for large datasets.

Production Use and Examples:

  • Model Selection: Compare different models and choose the one with the best cross-validation performance.
  • Hyperparameter Tuning: Optimize hyperparameters (model settings) by evaluating their impact on cross-validation performance.
  • Feature Selection: Identify and remove irrelevant or redundant features that may lead to overfitting.

python 复制代码
from sklearn.model_selection import KFold
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score

# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

# Define the model
model = LogisticRegression()

# Define the K-Fold cross-validation strategy
kfold = KFold(n_splits=5, shuffle=True, random_state=42)

# Track performance metrics
auc_scores = []

# Iterate through each fold
for train_index, test_index in kfold.split(X):
    # Split data into training and testing sets
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    # Train the model on the training data
    model.fit(X_train, y_train)

    # Make predictions on the testing data
    y_proba = model.predict_proba(X_test)[:, 1]  # Probability of positive class

    # Calculate AUC
    auc = roc_auc_score(y_test, y_proba)
    auc_scores.append(auc)

# Print the average AUC across all folds
print(f"Average AUC: {sum(auc_scores) / len(auc_scores):.2f}")
相关推荐
Chef_Chen42 分钟前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
AI街潜水的八角2 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦2 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
Chef_Chen4 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng4 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
-Nemophilist-4 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
艾派森5 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
6 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
忘梓.6 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen6 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习