Kaggle Intermediate ML Part Four——Cross-Validation

What is it?

Cross-validation is a technique used to evaluate the generalizability of a machine learning model. In simpler terms, it helps you understand how well your model will perform on unseen data, which is crucial for real-world applications.

Here's how it works:

  1. Split the data: Your original dataset is divided into folds (usually equally sized).
  2. Train-Test Split: In each fold, one fold is kept for testing (hold-out set), while the remaining folds are used for training the model.
  3. Evaluate and Repeat: The model is trained on the training data and evaluated on the hold-out set. This process is repeated for each fold, ensuring every data point is used for both training and testing.
  4. Combine and Analyze: The performance metrics (e.g., accuracy, precision, recall) from each fold are combined to get an overall estimate of the model's performance on unseen data.

Common Cross-Validation Techniques:

  • K-Fold Cross-validation: The data is split into k folds, and the training-testing process is repeated k times.
  • Stratified K-Fold: Similar to k-fold, but ensures each fold has a similar distribution of class labels (important for imbalanced datasets).
  • Leave-One-Out Cross-validation (LOOCV): Each data point is used as the testing set once, while all other points are used for training. This is computationally expensive for large datasets.

Production Use and Examples:

  • Model Selection: Compare different models and choose the one with the best cross-validation performance.
  • Hyperparameter Tuning: Optimize hyperparameters (model settings) by evaluating their impact on cross-validation performance.
  • Feature Selection: Identify and remove irrelevant or redundant features that may lead to overfitting.

python 复制代码
from sklearn.model_selection import KFold
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score

# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

# Define the model
model = LogisticRegression()

# Define the K-Fold cross-validation strategy
kfold = KFold(n_splits=5, shuffle=True, random_state=42)

# Track performance metrics
auc_scores = []

# Iterate through each fold
for train_index, test_index in kfold.split(X):
    # Split data into training and testing sets
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    # Train the model on the training data
    model.fit(X_train, y_train)

    # Make predictions on the testing data
    y_proba = model.predict_proba(X_test)[:, 1]  # Probability of positive class

    # Calculate AUC
    auc = roc_auc_score(y_test, y_proba)
    auc_scores.append(auc)

# Print the average AUC across all folds
print(f"Average AUC: {sum(auc_scores) / len(auc_scores):.2f}")
相关推荐
AI小云2 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
L.fountain2 天前
机器学习shap分析案例
人工智能·机器学习
weixin_429630262 天前
机器学习-第一章
人工智能·机器学习
Cedric11132 天前
机器学习中的距离总结
人工智能·机器学习
寒月霜华2 天前
机器学习-数据标注
人工智能·机器学习
Godspeed Zhao2 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383923 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
救救孩子把3 天前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
蒋星熠3 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Hcoco_me3 天前
什么是机器学习?
人工智能·机器学习