Kaggle Intermediate ML Part Four——Cross-Validation

What is it?

Cross-validation is a technique used to evaluate the generalizability of a machine learning model. In simpler terms, it helps you understand how well your model will perform on unseen data, which is crucial for real-world applications.

Here's how it works:

  1. Split the data: Your original dataset is divided into folds (usually equally sized).
  2. Train-Test Split: In each fold, one fold is kept for testing (hold-out set), while the remaining folds are used for training the model.
  3. Evaluate and Repeat: The model is trained on the training data and evaluated on the hold-out set. This process is repeated for each fold, ensuring every data point is used for both training and testing.
  4. Combine and Analyze: The performance metrics (e.g., accuracy, precision, recall) from each fold are combined to get an overall estimate of the model's performance on unseen data.

Common Cross-Validation Techniques:

  • K-Fold Cross-validation: The data is split into k folds, and the training-testing process is repeated k times.
  • Stratified K-Fold: Similar to k-fold, but ensures each fold has a similar distribution of class labels (important for imbalanced datasets).
  • Leave-One-Out Cross-validation (LOOCV): Each data point is used as the testing set once, while all other points are used for training. This is computationally expensive for large datasets.

Production Use and Examples:

  • Model Selection: Compare different models and choose the one with the best cross-validation performance.
  • Hyperparameter Tuning: Optimize hyperparameters (model settings) by evaluating their impact on cross-validation performance.
  • Feature Selection: Identify and remove irrelevant or redundant features that may lead to overfitting.

python 复制代码
from sklearn.model_selection import KFold
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score

# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

# Define the model
model = LogisticRegression()

# Define the K-Fold cross-validation strategy
kfold = KFold(n_splits=5, shuffle=True, random_state=42)

# Track performance metrics
auc_scores = []

# Iterate through each fold
for train_index, test_index in kfold.split(X):
    # Split data into training and testing sets
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    # Train the model on the training data
    model.fit(X_train, y_train)

    # Make predictions on the testing data
    y_proba = model.predict_proba(X_test)[:, 1]  # Probability of positive class

    # Calculate AUC
    auc = roc_auc_score(y_test, y_proba)
    auc_scores.append(auc)

# Print the average AUC across all folds
print(f"Average AUC: {sum(auc_scores) / len(auc_scores):.2f}")
相关推荐
JoannaJuanCV18 小时前
自动驾驶—CARLA仿真(29)传感器(Sensors and data)
人工智能·机器学习·自动驾驶
天呐草莓18 小时前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
车队老哥记录生活19 小时前
强化学习 RL 基础 3:随机近似方法 | 梯度下降
人工智能·算法·机器学习·强化学习
Godspeed Zhao20 小时前
自动驾驶中的传感器技术83——Sensor Fusion(6)
人工智能·机器学习·自动驾驶
没有梦想的咸鱼185-1037-166320 小时前
面向自然科学的人工智能建模方法【涵盖机器学习与深度学习的核心方法(如随机森林、XGBoost、CNN、LSTM、Transformer等)】
人工智能·深度学习·随机森林·机器学习·数据分析·卷积神经网络·transformer
燕双嘤20 小时前
LLM:RAG,设计模式,Agent框架
人工智能·机器学习·设计模式
海边夕阳200621 小时前
【每天一个AI小知识】:什么是图神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习
Brduino脑机接口技术答疑21 小时前
TDCA 算法在 SSVEP-BCI 中的时间戳技术要求与工程实现
人工智能·深度学习·机器学习·脑机接口·ssvep
啊阿狸不会拉杆1 天前
《数字图像处理》实验2-空间域灰度变换与滤波处理
图像处理·人工智能·机器学习·计算机视觉·数字图像处理
EniacCheng1 天前
贝叶斯定理
人工智能·机器学习·概率论