机器学习的魔法(二)超越预测的界限-揭秘机器学习的黑科技-探索监督学习中的回归和分类问题

前面我们提到了监督学习的概念,现在我们来回顾一下,什么是监督学习。

监督学习指的是:我们给学习算法一个数据集,这个数据集由正确答案组合而成,然后机器运用学习算法,算出更多的正确答案。

1、监督学习之回归问题

我们接着,上节提到的房价预测案例,进一步说明。

如上图,横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。

基于以上数据,假如 你有个朋友,她有750平方英尺的房子,能卖多少钱。

我们应用学习算法:

  • 可以在这组数据中拟合一条直线,我们可以根据这条直线推测出 ,这套房子可以卖150K美元。

  • 可以这组数据中使用二次方程拟和曲线,可以从曲线这个点,推测出这套房子可以卖200k美元。

以上案例的房价实际上是一系列的离散值,我们通常把它看成实数,看成标量,所以又把它看成一个连续的数值。

我们尝试推测一系列连续值的结果(房价),这叫回归问题

2、监督学习之分类问题

我们再举另外一个监督学习的例子。

假设:你想通过查看病历来推测乳腺癌良性与否。

假如有人检测出乳腺肿瘤,恶性肿瘤有害并且十分危险,而良性的肿瘤危害就没那么大。

我们来看一组数据:

这个数据集中,横轴表示肿瘤的大小;纵轴上,标出1和0表示是或者不是恶性肿瘤。

如果是恶性则记为1,良性记为 0。

机器学习的问题就在于:估算出肿瘤是恶性的或是良性的概率,这就是一个分类问题。

分类指的是,我们试着推测出离散的输出值:0或1,良性或恶性,而事实上在分类问题中,输出可能不止两个值。

总结:

监督学习的基本思想是,我们数据集中的每个样本都有相应的"正确答案",再根据这些样本作出预测。

3、案例分析

假设你经营着一家公司,你想开发学习算法来处理这两个问题:

1、你有一大批同样的货物,想象一下,你有上千件一模一样的货物等待出售,这时你想预测接下来的三个月能卖多少件?

2、你有许多客户,这时你想写一个软件来检验每一个用户的账户。对于每一个账户,你要判断它们是否曾经被盗过?

那这两个问题,它们属于分类问题、还是回归问题?

问题一: 是一个回归问题,如果我有数千件货物,我会把它看成一个实数,一个连续的值。因此卖出的物品数,也是一个连续的值。

问题二:是一个分类问题,因为我会把预测的值,用0 来表示账户未被盗,用1 表示账户曾经被盗过。所以我们根据账号是否被盗过,把它们定为0或 1,然后用算法推测一个账号是 0还是 1,因为只有少数的离散值,所以我把它归为分类问题。

相关推荐
Teacher.chenchong23 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ25 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI25 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课27 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo37 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn41 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5281 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源