机器学习的魔法(二)超越预测的界限-揭秘机器学习的黑科技-探索监督学习中的回归和分类问题

前面我们提到了监督学习的概念,现在我们来回顾一下,什么是监督学习。

监督学习指的是:我们给学习算法一个数据集,这个数据集由正确答案组合而成,然后机器运用学习算法,算出更多的正确答案。

1、监督学习之回归问题

我们接着,上节提到的房价预测案例,进一步说明。

如上图,横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。

基于以上数据,假如 你有个朋友,她有750平方英尺的房子,能卖多少钱。

我们应用学习算法:

  • 可以在这组数据中拟合一条直线,我们可以根据这条直线推测出 ,这套房子可以卖150K美元。

  • 可以这组数据中使用二次方程拟和曲线,可以从曲线这个点,推测出这套房子可以卖200k美元。

以上案例的房价实际上是一系列的离散值,我们通常把它看成实数,看成标量,所以又把它看成一个连续的数值。

我们尝试推测一系列连续值的结果(房价),这叫回归问题

2、监督学习之分类问题

我们再举另外一个监督学习的例子。

假设:你想通过查看病历来推测乳腺癌良性与否。

假如有人检测出乳腺肿瘤,恶性肿瘤有害并且十分危险,而良性的肿瘤危害就没那么大。

我们来看一组数据:

这个数据集中,横轴表示肿瘤的大小;纵轴上,标出1和0表示是或者不是恶性肿瘤。

如果是恶性则记为1,良性记为 0。

机器学习的问题就在于:估算出肿瘤是恶性的或是良性的概率,这就是一个分类问题。

分类指的是,我们试着推测出离散的输出值:0或1,良性或恶性,而事实上在分类问题中,输出可能不止两个值。

总结:

监督学习的基本思想是,我们数据集中的每个样本都有相应的"正确答案",再根据这些样本作出预测。

3、案例分析

假设你经营着一家公司,你想开发学习算法来处理这两个问题:

1、你有一大批同样的货物,想象一下,你有上千件一模一样的货物等待出售,这时你想预测接下来的三个月能卖多少件?

2、你有许多客户,这时你想写一个软件来检验每一个用户的账户。对于每一个账户,你要判断它们是否曾经被盗过?

那这两个问题,它们属于分类问题、还是回归问题?

问题一: 是一个回归问题,如果我有数千件货物,我会把它看成一个实数,一个连续的值。因此卖出的物品数,也是一个连续的值。

问题二:是一个分类问题,因为我会把预测的值,用0 来表示账户未被盗,用1 表示账户曾经被盗过。所以我们根据账号是否被盗过,把它们定为0或 1,然后用算法推测一个账号是 0还是 1,因为只有少数的离散值,所以我把它归为分类问题。

相关推荐
静静AI学堂16 分钟前
Yolo11改策略:卷积改进|SAC,提升模型对小目标和遮挡目标的检测性能|即插即用
人工智能·深度学习·目标跟踪
dundunmm29 分钟前
机器学习之PCA降维
机器学习·信息可视化·数据挖掘·数据分析
martian66539 分钟前
【人工智能离散数学基础】——深入详解数理逻辑:理解基础逻辑概念,支持推理和决策系统
人工智能·数理逻辑·推理·决策系统
Schwertlilien40 分钟前
图像处理-Ch7-图像金字塔和其他变换
图像处理·人工智能
凡人的AI工具箱1 小时前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜1 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
凡人的AI工具箱1 小时前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军1 小时前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
Kenneth風车1 小时前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中1 小时前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络