[ISP]DCT离散余弦变换及C++代码demo

1.基本定义

离散余弦变换(DCT for Discrete Cosine Transform)

DCT(Discrete Cosine Transform,离散余弦变换)是一种常用的信号处理技术,广泛应用于图像处理、音频处理、视频压缩等领域。DCT将一个信号或数据序列从时域(或空域)转换为频域,可以有效地提取信号的频域特征,实现信号的压缩和特征提取。

DCT与傅里叶变换类似,但DCT仅使用实数部分,因此更适合于处理实际信号。DCT将信号分解为一系列余弦函数的加权和这些余弦函数的频率从低到高排列,能够较好地捕捉信号的频域特征

在图像处理中,DCT常用于JPEG图像压缩算法中,将图像分块进行DCT变换,然后通过量化和熵编码实现图像的压缩。在音频处理中,DCT也被用于音频压缩和音频特征提取。此外,DCT还可以应用于数据压缩、信号处理、模式识别等领域。

总的来说,DCT是一种重要的信号处理技术,具有广泛的应用领域,能够帮助我们理解信号的频域特征、实现信号的压缩和特征提取。

2.demo实现代码

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

void dctImage(cv::Mat& image) {
    cv::Mat imageFloat;
    image.convertTo(imageFloat, CV_32F); // 转换为32位浮点数

    cv::Mat channels[3];
    cv::split(imageFloat, channels); // 将图像拆分为RGB通道

    for (int i = 0; i < 3; ++i) {
        cv::dct(channels[i], channels[i]); // 对每个通道应用DCT
    }

    //可选,低频滤波处理
    int cutofffreq = 10;//截止频率
    for (int i = 0; i < 3; i++)
    {
        for (int row = 0; row < channels[i].rows; ++row) {
            for (int col = 0; col < channels[i].cols; col++)
            {
                if (row > cutofffreq || col > cutofffreq) {
                    channels[i].at<float>(row, col) = 0;//高频部分置零
                }
            }
        }
    }
    for (int i = 0; i < 3; ++i) {
        cv::idct(channels[i], channels[i]); // 对每个通道应用逆DCT
    }

    cv::merge(channels, 3, imageFloat); // 合并RGB通道

    imageFloat.convertTo(image, CV_8U); // 转换回8位图像
}

int main() {
    cv::Mat image = cv::imread("F:/2024/ISP_Cpp/1.DCTdemo/ISPcpp_0.jpg"); // 读取RGB图像

    if (image.empty()) {
        std::cerr << "Error: Unable to read image file." << std::endl;
        return -1;
    }

    dctImage(image); // 应用DCT处理图像
    cv::Mat resizedImage;
    cv::resize(image, resizedImage, cv::Size(), 0.5, 0.5);//调整图像大小

    //cv::imshow("DCT Image", resizedImage); // 显示处理后的图像
    cv::imwrite("F:/2024/ISP_Cpp/1.DCTdemo/processed_image.jpg", resizedImage);
    cv::waitKey(0);

    return 0;
}

3.DCT 去高频效果

相关推荐
_殊途1 小时前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
千宇宙航3 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十四课——图像二值化的FPGA实现
图像处理·计算机视觉·fpga开发
橡晟3 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子3 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01053 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
PyAIExplorer4 小时前
图像亮度调整的简单实现
人工智能·计算机视觉
珊瑚里的鱼5 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
Striker_Eureka5 小时前
DiffDet4SAR——首次将扩散模型用于SAR图像目标检测,来自2024 GRSL(ESI高被引1%论文)
人工智能·目标检测
Rvelamen5 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
秋说6 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法