半监督

实际上就是在加载dataloader那里做了调整,采样器

这段代码定义了一个名为create_data_loaders的函数,用于创建训练集和验证集的数据加载器。

复制代码
def create_data_loaders(train_transform, eval_transform, datadir, config):
    traindir = os.path.join(datadir, config.train_subdir)
    trainset = torchvision.datasets.ImageFolder(traindir, train_transform)

首先,将训练集的路径拼接起来,然后使用torchvision.datasets.ImageFolder函数加载训练集。ImageFolder是一个用于处理图像文件夹数据集的类,它假设图像文件夹的结构是按照类别分组的,每个类别的图像放在对应的子文件夹中。

复制代码
    if config.labels:
        with open(config.labels) as f:
            labels = dict(line.split(' ') for line in f.read().splitlines())
        labeled_idxs, unlabeled_idxs = datasets.relabel_dataset(trainset, labels)

如果配置中提供了标签文件的路径config.labels,则打开标签文件并将其读取为一个字典。标签文件中的每一行包含图像文件名和对应的标签,通过空格分隔。relabel_dataset函数根据标签文件将训练集中的样本分为有标签和无标签样本,并返回有标签样本的索引和无标签样本的索引。

复制代码
    assert len(trainset.imgs) == len(labeled_idxs) + len(unlabeled_idxs)

确保有标签样本和无标签样本的数量与训练集中的总样本数量相等。

复制代码
    if config.labeled_batch_size < config.batch_size:
        assert len(unlabeled_idxs) > 0
        batch_sampler = datasets.TwoStreamBatchSampler(unlabeled_idxs, labeled_idxs, config.batch_size, config.labeled_batch_size)
    else:
        sampler = SubsetRandomSampler(labeled_idxs)
        batch_sampler = BatchSampler(sampler, config.batch_size, drop_last=True)

根据配置中的有标签批次大小config.labeled_batch_size和总批次大小config.batch_size,决定使用哪种批次采样方式。如果有标签批次大小小于总批次大小,将使用datasets.TwoStreamBatchSampler创建一个两流批次采样器,该采样器在每个批次中同时包含有标签和无标签样本。否则,将使用SubsetRandomSampler创建一个只包含有标签样本的采样器。

复制代码
    train_loader = torch.utils.data.DataLoader(trainset, batch_sampler=batch_sampler, num_workers=config.workers, pin_memory=True)

使用torch.utils.data.DataLoader创建训练集的数据加载器,其中采用了上面创建的批次采样器。num_workers参数指定了用于数据加载的子进程数量,pin_memory=True表示将数据加载到固定的内存区域,可以加速数据传输。

复制代码
    evaldir = os.path.join(datadir, config.eval_subdir)
    evalset = torchvision.datasets.ImageFolder(evaldir, eval_transform)
    eval_loader = torch.utils.data.DataLoader(evalset, batch_size=config.batch_size, shuffle=False, num_workers=2*config.workers, pin_memory=True, drop_last=False)

接下来,将验证集的路径拼接起来,然后使用torchvision.datasets.ImageFolder加载验证集。与训练集类似,也使用torch.utils.data.DataLoader创建验证集的数据加载器。

最后,将训练集和验证集的数据加载器作为结果返回。

这段代码的作用是根据配置中的设置,创建训练集和验证集的数据加载器。在半监督学习中,训练集中的样本被分为有标签和无标签样本,并使用不同的批次采样方式对它们进行训练。

相关推荐
Serendipity_Carl3 分钟前
1637加盟网数据实战(数分可视化)
爬虫·python·pycharm·数据可视化·数据清洗
流㶡6 分钟前
网络爬虫之requests.get() 之爬取网页内容
python·数据爬虫
weixin_3954489110 分钟前
main.c_cursor_0129
前端·网络·算法
cd_9492172111 分钟前
九昆仑低碳科技:所罗门群岛全国森林碳汇项目开发合作白皮书
大数据·人工智能·科技
工程师老罗15 分钟前
目标检测数据标注的工具与使用方法
人工智能·目标检测·计算机视觉
yuankoudaodaokou15 分钟前
高校科研新利器:思看科技三维扫描仪助力精密研究
人工智能·python·科技
Acrelhuang20 分钟前
工商业用电成本高?安科瑞液冷储能一体机一站式解供能难题-安科瑞黄安南
大数据·开发语言·人工智能·物联网·安全
小王毕业啦21 分钟前
2010-2024年 非常规高技能劳动力(+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
CS创新实验室23 分钟前
《计算机网络》深入学:路由算法与路径选择
网络·计算机网络·算法
一条大祥脚23 分钟前
ABC357 基环树dp|懒标记线段树
数据结构·算法·图论