RAPTOR 一种基于树的RAG方法,RAG的准确率提高 20%

一种理解整个文档上下文的新颖的 RAG 方法

RAG 是当前使用LLM的标准方法,大多数现有方法仅从检索语料库中检索短的连续块,限制了对整个文档上下文的整体理解。

最近,一种名为 RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)方法提出来,该方法核心思想是将doc构建为一棵树,然后逐层递归的查询,如下图所示:

在推理时,RAPTOR 模型从该树中检索,在不同抽象级别的文档中找出匹配片段。

在涉及复杂、多步骤推理的问答任务中,通过将 RAPTOR 检索与 GPT-4 结合使用,可以将 QuALITY 基准的准确率提高 20%。

树的构建过程

构建树的过程,RAPTOR 根据其语义embedding递归地对文本块chunk进行聚类,并生成这些聚类的文本摘要。

RAPTOR 根据向量递归地对文本块进行聚类,并生成这些聚类的文本摘要,从而自下而上构建一棵树。 聚集在一起的节点是兄弟节点; 父节点包含该集群的文本摘要。这种结构使 RAPTOR 能够将代表不同级别文本的上下文块加载到 LLM 的上下文中,以便它能够有效且高效地回答不同层面的问题。

树的聚类算法基于高斯混合模型 (GMM),聚类后,每个聚类中的节点被发送到LLM进行概括。在实验中,作者使用 gpt-3.5-turbo 来生成摘要。摘要步骤将可能大量的检索信息压缩(summarization)到一个可控的大小。

查询过程

查询有两种方法,基于树遍历(tree traversal)和折叠树(collapsed tree)

遍历是从 RAPTOR 树的根层开始,然后逐层查询

折叠树就是全部平铺,用ANN库查询。

查询方法的比较

折叠树方法具有更大的灵活性,F1会更高。

相关推荐
西西弗Sisyphus3 小时前
RAGFlow 基于深度文档理解构建的开源 RAG引擎 - 在 Ubuntu 上安装 Docker Engine
docker·大模型·rag
西西弗Sisyphus5 小时前
RAGFlow 基于深度文档理解构建的开源 RAG引擎 vm.max_map_count配置
大模型·rag
洛阳泰山2 天前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
lzl20407 天前
【深度学习总结】使用PDF构建RAG:结合Langchain和通义千问
深度学习·langchain·通义千问·qwen·rag
暮暮七11 天前
基于Llamaindex的网页内容爬取实战
python·rag·llamaindex·网页读取
AI大模型_学习君13 天前
{结对编程/大模型} 实践营项目案例 | 基于RAG搭建政策问答智能聊天助手
人工智能·深度学习·大模型·easyui·rag·结对编程·大模型应用
Florian15 天前
RAG七十二式:2024年度RAG清单
graph·rag·2024·survey·tugraph
强哥之神19 天前
一睹:微软最新发布的LazyGraphRAG
大数据·人工智能·深度学习·microsoft·机器学习·语言模型·rag
阿里云大数据AI技术20 天前
面向金融场景的大模型 RAG 检索增强解决方案
人工智能·python·阿里云·rag·pai