基于深度学习的驾驶员分心驾驶行为(疲劳+危险行为)预警系统使用YOLOv5+Deepsort实现驾驶员的危险驾驶行为的预警监测

人物专注性检测

项目快速预览

主要不同地方为:

1、疲劳检测中去掉了点头行为的检测,仅保留闭眼检测和打哈欠检测。

2、Yolov5的权重进行了重新训练,增加了训练轮次。

3、前端UI进行了修改,精简了部分功能。

项目介绍

该项目为人物专注性检测,分为两个检测部分,疲劳检测和分心行为检测。

疲劳检测部分,使用Dlib进行人脸关键点检测,然后通过计算眼睛和嘴巴的开合程度来判断是存在否闭眼或者打哈欠,并使用Perclos模型计算疲劳程度。

分心行为检测部分,使用Yolov5,检测是否存在玩手机、抽烟、喝水这三种行为。

使用方法

依赖:YoloV5、Dlib、PySide2

直接运行main.py,即可使用本程序,具体效果可以观看演示视频。

bilibili在线观看

完整代码下载地址:
基于深度学习的驾驶员分心驾驶行为(疲劳+危险行为)预警系统

相关推荐
UQI-LIUWJ4 分钟前
论文略:ACloser Look into Mixture-of-Experts in Large Language Models
人工智能·语言模型·自然语言处理
007_rbq8 分钟前
XUnity.AutoTranslator-Gemini——调用Google的Gemini API, 实现Unity游戏中日文文本的自动翻译
人工智能·python·游戏·机器学习·unity·github·机器翻译
IT猿手34 分钟前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
訾博ZiBo41 分钟前
AI日报 - 2025年2月23日 - 推特版
人工智能
JolyouLu44 分钟前
PyTorch-基础(CUDA、Dataset、transforms、卷积神经网络、VGG16)
人工智能·pytorch·cnn
CS_木成河1 小时前
【深度学习】预训练和微调概述
人工智能·深度学习·语言模型·微调·预训练
新加坡内哥谈技术1 小时前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理
真智AI1 小时前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
OpenBuild.xyz1 小时前
我是如何从 0 到 1 找到 Web3 工作的?
人工智能·web3·去中心化·区块链·智能合约
Sui_Network1 小时前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链