flink:自定义数据分区

shuffle随机地将数据分配到下游的子任务。

rebalance用round robbin模式将数据分配到下游的子任务。

global把所有的数据都分配到一个分区。

partitionCustom: 自定义数据分区。

package cn.edu.tju.demo;

import org.apache.flink.api.common.functions.;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.
;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.api.functions.co.CoMapFunction;

import org.apache.flink.streaming.api.functions.source.SourceFunction;

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import org.apache.flink.util.Collector;

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.clients.producer.ProducerConfig;

import org.apache.kafka.common.serialization.StringDeserializer;

import org.apache.kafka.common.serialization.StringSerializer;

import java.util.*;

public class Test12 {

public static void main(String[] args) throws Exception {

StreamExecutionEnvironment environment = StreamExecutionEnvironment

.getExecutionEnvironment();

复制代码
    DataStreamSource<String> mySource = environment.addSource(new MySourceFunction());
    SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = mySource.map(new MapFunction<String, Tuple2<String, Integer>>() {
        @Override
        public Tuple2<String, Integer> map(String value) throws Exception {
            return new Tuple2<>(value, new Random().nextInt(10));
        }
    });

    DataStream<Tuple2<String, Integer>> resultStream = mapStream.partitionCustom(new MyPartitioner(), 1);


    resultStream.print();

    environment.execute("my job");

}

public static class MyPartitioner implements Partitioner<Integer>{

    @Override
    public int partition(Integer key, int partitions) {
        return key % partitions;
    }
}



public static class MySourceFunction implements SourceFunction<String> {
    private boolean runningFlag = true;
    @Override
    public void run(SourceContext<String> ctx) throws Exception {
        while (runningFlag){
            ctx.collect("hi world");
            ctx.collect("hello world");
            Thread.sleep(30000);
        }
    }

    @Override
    public void cancel() {
        runningFlag = false;
    }
}

}

相关推荐
最初的↘那颗心3 分钟前
Flink Stream API 源码走读 - print()
java·大数据·hadoop·flink·实时计算
君不见,青丝成雪1 小时前
hadoop技术栈(九)Hbase替代方案
大数据·hadoop·hbase
晴天彩虹雨1 小时前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
朗迪锋1 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
杨荧2 小时前
基于Python的宠物服务管理系统 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python·信息可视化
健康平安的活着2 小时前
es7.x es的高亮与solr高亮查询的对比&对比说明
大数据·elasticsearch·solr
缘华工业智维3 小时前
CNN 在故障诊断中的应用:原理、案例与优势
大数据·运维·cnn
更深兼春远3 小时前
spark+scala安装部署
大数据·spark·scala
阿里云大数据AI技术4 小时前
ODPS 十五周年实录 | 为 AI 而生的数据平台
大数据·数据分析·开源
哈哈很哈哈5 小时前
Spark 运行流程核心组件(三)任务执行
大数据·分布式·spark