Pytorch线性回归实现(Pycharm实现)

步骤都在注释里写清楚了,可以自己调整循环的次数观察输出的w与b和loss的值

python 复制代码
import torch

#学习率,用来进行w和b的更新
learning_rate = 0.01
#1. 准备数据
#这里使用y=3x+0.8.也就是w=3,b=0.8.创造一个500行1列的数据
x=torch.rand([500,1])
y_true=x*0.3+0.8

#2. 通过模型计算y_predict。x*w,所以w是1行1列的.torch.matmul是矩阵乘法.只有浮点数才能使用grad。修改dtype
w = torch.rand([1,1],requires_grad=True)
b = torch.tensor(0,requires_grad=True,dtype=torch.float32)


#4. 通过循环,反向传播,更新参数
for i in range(5000):
    y_predict = torch.matmul(x, w) + b
    # 3. 计算loss.用平方来处理,这里mean不太清楚是什么意思。均方误差?这是什么?....每次都需要更新损失,所以把他放在循环里
    loss = (y_true - y_predict).pow(2).mean()

    #每次backward之前梯度置为0
    if w.grad is not None:
        w.grad.data.zero_()
    if b.grad is not None:
        b.grad.data.zero_()

    loss.backward() #反向传播.这时w和b的梯度就算出来了w.grad,b.grad
    w.data = w.data - learning_rate * w.grad
    b.data = b.data - learning_rate * b.grad  #要注意左边不要写成grad,写成grad之后b的内容就一直是0
    print("w,b,loss",w.item(),b.item(),loss.item())

输出:

可以观察到w接近0.3,b接近0.8。和预想值十分接近了。

问题:

这里的理解有欠缺。。。

相关推荐
Hello Mr.Z2 小时前
使用pytorch创建/训练/推理OCR模型
人工智能·pytorch·python
点云SLAM9 小时前
PyTorch 中.backward() 详解使用
人工智能·pytorch·python·深度学习·算法·机器学习·机器人
山烛16 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
yzx99101317 小时前
图像去雾:从暗通道先验到可学习融合——一份可跑的 PyTorch 教程
人工智能·pytorch·学习
2401_8979300619 小时前
PyTorch 中训练语言模型过程
人工智能·pytorch·语言模型
张子夜 iiii19 小时前
传统神经网络实现-----手写数字识别(MNIST)项目
人工智能·pytorch·python·深度学习·算法
大明者省21 小时前
pycharm解释器使用anaconda建立的虚拟环境里面的python,无需系统里面安装python。
linux·python·pycharm
兮希yxx1 天前
conda配置pytorch虚拟环境
人工智能·pytorch·conda
黛色正浓1 天前
【Pycharm】Pychram软件工具栏Git和VCS切换
pycharm
程序员miki2 天前
Pytorch的CUDA版本安装使用教程
人工智能·pytorch·python