Pytorch线性回归实现(Pycharm实现)

步骤都在注释里写清楚了,可以自己调整循环的次数观察输出的w与b和loss的值

python 复制代码
import torch

#学习率,用来进行w和b的更新
learning_rate = 0.01
#1. 准备数据
#这里使用y=3x+0.8.也就是w=3,b=0.8.创造一个500行1列的数据
x=torch.rand([500,1])
y_true=x*0.3+0.8

#2. 通过模型计算y_predict。x*w,所以w是1行1列的.torch.matmul是矩阵乘法.只有浮点数才能使用grad。修改dtype
w = torch.rand([1,1],requires_grad=True)
b = torch.tensor(0,requires_grad=True,dtype=torch.float32)


#4. 通过循环,反向传播,更新参数
for i in range(5000):
    y_predict = torch.matmul(x, w) + b
    # 3. 计算loss.用平方来处理,这里mean不太清楚是什么意思。均方误差?这是什么?....每次都需要更新损失,所以把他放在循环里
    loss = (y_true - y_predict).pow(2).mean()

    #每次backward之前梯度置为0
    if w.grad is not None:
        w.grad.data.zero_()
    if b.grad is not None:
        b.grad.data.zero_()

    loss.backward() #反向传播.这时w和b的梯度就算出来了w.grad,b.grad
    w.data = w.data - learning_rate * w.grad
    b.data = b.data - learning_rate * b.grad  #要注意左边不要写成grad,写成grad之后b的内容就一直是0
    print("w,b,loss",w.item(),b.item(),loss.item())

输出:

可以观察到w接近0.3,b接近0.8。和预想值十分接近了。

问题:

这里的理解有欠缺。。。

相关推荐
小女孩真可爱5 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
合作小小程序员小小店5 小时前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归
Predestination王瀞潞11 小时前
Windows环境下Pytorch的配置
人工智能·pytorch·python
夫唯不争,故无尤也12 小时前
PyTorch 的维度变形一站式入门
人工智能·pytorch·python
nix.gnehc15 小时前
PyTorch
人工智能·pytorch·python
z樾16 小时前
TorchRL-MADDPG
pytorch·python·深度学习
夫唯不争,故无尤也1 天前
梯度累计原理:数学可行性与PyTorch实现
人工智能·pytorch·python
6***37942 天前
MySQLGraphQLAPI
线性回归·odps·iava-rocketma
G***T6912 天前
GitGraphQL案例
pycharm·perl·etl
八年。。2 天前
Ai笔记(二)-PyTorch 中各类数据类型(numpy array、list、FloatTensor、LongTensor、Tensor)的区别
人工智能·pytorch·笔记