【动态规划入门】判断子序列

每日一道算法题之判断子序列

一、题目描述

题目来源:LeetCode

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例如下:

cpp 复制代码
输入:
abc
ahdgbc
输出:true

二、思路

这个题目和之前的最长公共之序列的题目非常类似,在此不再赘述,唯一要注意的一点就是本题如果要删除字符,一定是删除s2字符串的字符,而最长公共子序列那题则是两个都可以进行删除。

  • 区别:
cpp 复制代码
最长公共子序列:
if(s1[i-1]==s2[j-1]){
					dp[i][j]=dp[i-1][j-1]+1;
				}else{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}

判断子序列:
if(s1[i-1]==s2[j-1]){
					dp[i][j]=dp[i-1][j-1]+1;
				}else{
					dp[i][j]=dp[i][j-1];
				}

三、C++代码

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;

//判断子序列 
#define maxn 10010
int dp[maxn][maxn];   //以下标i-1为结尾的字符串s1,和以下标j-1为结尾的字符串s2,相同子序列的长度为dp[i][j]。


int main(){
	
	 
	 string s1,s2;
	 cin>>s1>>s2;
	 
	 int N=s1.size();
	 int M=s2.size();
	 
	 //dp数组初始化
	 for(int i=0;i<N;i++){
			dp[i][0]=0;
	 } 
	 for(int j=0;j<M;j++){
			dp[0][j]=0;
	 }
	 
	 //确定递推关系
	 for(int i=1;i<=N;i++){
			for(int j=1;j<=M;j++){
				if(s1[i-1]==s2[j-1]){
					dp[i][j]=dp[i-1][j-1]+1;
				}else{
					dp[i][j]=dp[i][j-1];
				}
			}
	 } 
	 
	 if(dp[N][M]==N){
			cout<<"true";
	 }else{
			cout<<"false";
	 }
	 
	 
	  
} 
相关推荐
小欣加油7 小时前
leetcode 1018 可被5整除的二进制前缀
数据结构·c++·算法·leetcode·职场和发展
WWZZ20258 小时前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
Andrew_Ryan8 小时前
llama.cpp Build Instructions
算法
玖剹8 小时前
递归练习题(四)
c语言·数据结构·c++·算法·leetcode·深度优先·深度优先遍历
做人不要太理性8 小时前
【Linux系统】线程的同步与互斥:核心原理、锁机制与实战代码
linux·服务器·算法
向阳逐梦9 小时前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
Mz12219 小时前
day04 小美的区间删除
数据结构·算法
_OP_CHEN9 小时前
算法基础篇:(十九)吃透 BFS!从原理到实战,解锁宽度优先搜索的核心玩法
算法·蓝桥杯·bfs·宽度优先·算法竞赛·acm/icpc
小猪咪piggy9 小时前
【算法】day 20 leetcode 贪心
算法·leetcode·职场和发展