10 OpenCV 形态学的应用

文章目录

算子

adaptiveThreshold 二值化算子

c 复制代码
adaptiveThreshold(src, dst=None,maxValue, adaptiveMethod, thresholdType, blockSize, C, )
/*
*src:灰度化的图片
*dst:输出图像,可选
*maxValue:满足条件的像素点需要设置的灰度值
*adaptiveMethod:自适应方法。有2种:ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C
*thresholdType:二值化方法,可以设置为THRESH_BINARY或者THRESH_BINARY_INV
*blockSize:分割计算的区域大小,取奇数
* C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

*/

形态学提取直线示例

想法:把获取二值化的图片轮廓,对直线进行开闭运算

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main() {
	Mat src, dst;
	src = imread("chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	

	Mat temp;
	erode(binImg, temp, hline );
	dilate(temp, dst, hline );
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
	bitwise_not(dst, dst);
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}


相关推荐
海边夕阳20062 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI2 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_2 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭2 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT2 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"3 小时前
专项智能练习(课程类型)
人工智能
2501_918126913 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home3 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊4 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek