10 OpenCV 形态学的应用

文章目录

算子

adaptiveThreshold 二值化算子

c 复制代码
adaptiveThreshold(src, dst=None,maxValue, adaptiveMethod, thresholdType, blockSize, C, )
/*
*src:灰度化的图片
*dst:输出图像,可选
*maxValue:满足条件的像素点需要设置的灰度值
*adaptiveMethod:自适应方法。有2种:ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C
*thresholdType:二值化方法,可以设置为THRESH_BINARY或者THRESH_BINARY_INV
*blockSize:分割计算的区域大小,取奇数
* C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

*/

形态学提取直线示例

想法:把获取二值化的图片轮廓,对直线进行开闭运算

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main() {
	Mat src, dst;
	src = imread("chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	

	Mat temp;
	erode(binImg, temp, hline );
	dilate(temp, dst, hline );
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
	bitwise_not(dst, dst);
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}


相关推荐
掘金安东尼19 分钟前
互联网不再由 URL 为核心入口
前端·人工智能·github
XZSSWJS29 分钟前
机器视觉学习-day03-灰度化实验-二值化和自适应二值化
人工智能·学习·计算机视觉
martian66536 分钟前
大模型部署:AI大模型在医学影像分类中的ONNX、TensorRT和Docker应用
人工智能·docker·分类·ai大模型·hugging face
Monkey的自我迭代42 分钟前
深度学习入门第一课——神经网络实现手写数字识别
人工智能·深度学习·神经网络
IT_陈寒1 小时前
3年Java开发经验总结:提升50%编码效率的7个核心技巧与实战案例
前端·人工智能·后端
wjt1020201 小时前
支持向量机(SVM)内容概述
人工智能·机器学习·支持向量机
不爱学英文的码字机器2 小时前
[CS创世SD NAND征文] CS创世CSNP1GCR01-AOW在运动控制卡中的高可靠应用
人工智能·嵌入式硬件·物联网·iot
chian-ocean5 小时前
Bright Data 代理 + MCP :解决 Google 搜索反爬的完整方案
人工智能·python
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年8月25日第170弹
人工智能·算法·机器学习·彩票
Ronin-Lotus8 小时前
深度学习篇--- ResNet-18
人工智能·深度学习·resnet