10 OpenCV 形态学的应用

文章目录

算子

adaptiveThreshold 二值化算子

c 复制代码
adaptiveThreshold(src, dst=None,maxValue, adaptiveMethod, thresholdType, blockSize, C, )
/*
*src:灰度化的图片
*dst:输出图像,可选
*maxValue:满足条件的像素点需要设置的灰度值
*adaptiveMethod:自适应方法。有2种:ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C
*thresholdType:二值化方法,可以设置为THRESH_BINARY或者THRESH_BINARY_INV
*blockSize:分割计算的区域大小,取奇数
* C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

*/

形态学提取直线示例

想法:把获取二值化的图片轮廓,对直线进行开闭运算

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main() {
	Mat src, dst;
	src = imread("chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	

	Mat temp;
	erode(binImg, temp, hline );
	dilate(temp, dst, hline );
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
	bitwise_not(dst, dst);
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}


相关推荐
Clarence Liu24 分钟前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型32 分钟前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室1 小时前
AI4Science开源汇总
人工智能
CeshirenTester1 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis1 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs1 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷1 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极1 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发
冰西瓜6002 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
模型时代2 小时前
Claude AI 发现 500 个高危软件漏洞
人工智能