10 OpenCV 形态学的应用

文章目录

算子

adaptiveThreshold 二值化算子

c 复制代码
adaptiveThreshold(src, dst=None,maxValue, adaptiveMethod, thresholdType, blockSize, C, )
/*
*src:灰度化的图片
*dst:输出图像,可选
*maxValue:满足条件的像素点需要设置的灰度值
*adaptiveMethod:自适应方法。有2种:ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C
*thresholdType:二值化方法,可以设置为THRESH_BINARY或者THRESH_BINARY_INV
*blockSize:分割计算的区域大小,取奇数
* C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

*/

形态学提取直线示例

想法:把获取二值化的图片轮廓,对直线进行开闭运算

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main() {
	Mat src, dst;
	src = imread("chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	

	Mat temp;
	erode(binImg, temp, hline );
	dilate(temp, dst, hline );
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
	bitwise_not(dst, dst);
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}


相关推荐
唐某人丶5 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云5 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术5 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新5 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心6 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算6 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位6 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算6 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
聚客AI8 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar8 小时前
一文讲清 nn.Sequential 等容器类
人工智能