10 OpenCV 形态学的应用

文章目录

算子

adaptiveThreshold 二值化算子

c 复制代码
adaptiveThreshold(src, dst=None,maxValue, adaptiveMethod, thresholdType, blockSize, C, )
/*
*src:灰度化的图片
*dst:输出图像,可选
*maxValue:满足条件的像素点需要设置的灰度值
*adaptiveMethod:自适应方法。有2种:ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C
*thresholdType:二值化方法,可以设置为THRESH_BINARY或者THRESH_BINARY_INV
*blockSize:分割计算的区域大小,取奇数
* C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

*/

形态学提取直线示例

想法:把获取二值化的图片轮廓,对直线进行开闭运算

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main() {
	Mat src, dst;
	src = imread("chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	

	Mat temp;
	erode(binImg, temp, hline );
	dilate(temp, dst, hline );
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
	bitwise_not(dst, dst);
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}


相关推荐
DFminer1 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic1 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU2 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec2 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子2 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study2 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz2 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子3 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊3 小时前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss