【pytorch学习】交叉熵损失函数 nn.CrossEntropyLoss() = nn.LogSoftmax(dim=1) + nn.NLLLoss()

结论: Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。

from: https://zhuanlan.zhihu.com/p/98785902

python 复制代码
import torch
import torch.nn as nn
x_input=torch.randn(3,3)#随机生成输入 
print('x_input:\n',x_input) 
y_target=torch.tensor([1,2,0])#设置输出具体值 print('y_target\n',y_target)

#计算输入softmax,此时可以看到每一行加到一起结果都是1
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x_input)
print('soft_output:\n',soft_output)

#在softmax的基础上取log
log_output=torch.log(soft_output)
print('log_output:\n',log_output)

#对比softmax与log的结合与nn.LogSoftmaxloss(负对数似然损失)的输出结果,发现两者是一致的。
logsoftmax_func=nn.LogSoftmax(dim=1)
logsoftmax_output=logsoftmax_func(x_input)
print('logsoftmax_output:\n',logsoftmax_output)

#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(logsoftmax_output,y_target)
print('nlloss_output:\n',nlloss_output)

#直接使用pytorch中的loss_func=nn.CrossEntropyLoss()看与经过NLLLoss的计算是不是一样
crossentropyloss=nn.CrossEntropyLoss()
crossentropyloss_output=crossentropyloss(x_input,y_target)
print('crossentropyloss_output:\n',crossentropyloss_output)

最后计算得到的结果为:

python 复制代码
x_input:
 tensor([[ 2.8883,  0.1760,  1.0774],
        [ 1.1216, -0.0562,  0.0660],
        [-1.3939, -0.0967,  0.5853]])
y_target
 tensor([1, 2, 0])
soft_output:
 tensor([[0.8131, 0.0540, 0.1329],
        [0.6039, 0.1860, 0.2102],
        [0.0841, 0.3076, 0.6083]])
log_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
logsoftmax_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
nlloss_output:
 tensor(2.3185)
crossentropyloss_output:
 tensor(2.3185)

通过上面的结果可以看出,直接使用pytorch中的loss_func=nn.CrossEntropyLoss()计算得到的结果与softmax-log-NLLLoss计算得到的结果是一致的。

相关推荐
Power202466627 分钟前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k30 分钟前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫35 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班1 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k1 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr1 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食1 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
北京搜维尔科技有限公司2 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
@小博的博客2 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习