结论: Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。
from: https://zhuanlan.zhihu.com/p/98785902
python
import torch
import torch.nn as nn
x_input=torch.randn(3,3)#随机生成输入
print('x_input:\n',x_input)
y_target=torch.tensor([1,2,0])#设置输出具体值 print('y_target\n',y_target)
#计算输入softmax,此时可以看到每一行加到一起结果都是1
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x_input)
print('soft_output:\n',soft_output)
#在softmax的基础上取log
log_output=torch.log(soft_output)
print('log_output:\n',log_output)
#对比softmax与log的结合与nn.LogSoftmaxloss(负对数似然损失)的输出结果,发现两者是一致的。
logsoftmax_func=nn.LogSoftmax(dim=1)
logsoftmax_output=logsoftmax_func(x_input)
print('logsoftmax_output:\n',logsoftmax_output)
#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(logsoftmax_output,y_target)
print('nlloss_output:\n',nlloss_output)
#直接使用pytorch中的loss_func=nn.CrossEntropyLoss()看与经过NLLLoss的计算是不是一样
crossentropyloss=nn.CrossEntropyLoss()
crossentropyloss_output=crossentropyloss(x_input,y_target)
print('crossentropyloss_output:\n',crossentropyloss_output)
最后计算得到的结果为:
python
x_input:
tensor([[ 2.8883, 0.1760, 1.0774],
[ 1.1216, -0.0562, 0.0660],
[-1.3939, -0.0967, 0.5853]])
y_target
tensor([1, 2, 0])
soft_output:
tensor([[0.8131, 0.0540, 0.1329],
[0.6039, 0.1860, 0.2102],
[0.0841, 0.3076, 0.6083]])
log_output:
tensor([[-0.2069, -2.9192, -2.0178],
[-0.5044, -1.6822, -1.5599],
[-2.4762, -1.1790, -0.4970]])
logsoftmax_output:
tensor([[-0.2069, -2.9192, -2.0178],
[-0.5044, -1.6822, -1.5599],
[-2.4762, -1.1790, -0.4970]])
nlloss_output:
tensor(2.3185)
crossentropyloss_output:
tensor(2.3185)
通过上面的结果可以看出,直接使用pytorch中的loss_func=nn.CrossEntropyLoss()计算得到的结果与softmax-log-NLLLoss计算得到的结果是一致的。