deeplearning with pytorch (五)

.view()方法在PyTorch中用于重塑张量。这里它被用来将单个样本的张量重塑成模型所期望的输入形状。具体地,1,1,28,28意味着创建一个新的张量,其中:

  • 第一个1代表批次大小(batch size),这里为1,因为你只预测一个样本。
  • 第二个1可能代表颜色通道的数量,这在处理灰度图像时常见,意味着每个像素只有一个颜色值。对于RGB图像,这个数字会是3。
  • 28,28代表图像的高度和宽度,这是典型的MNIST手写数字数据集的维度。
python 复制代码
#graph the loss at epoch
train_losses = [tl.item() for tl in train_losses]
plt.plot(train_losses, label= "training loss")
plt.plot(test_losses, label="validation loss")
plt.title("loss at epoch")
plt.legend()
#graph the accuracy at the end of each epoch
plt.plot([t/600 for t in train_correct], label = "training accuracy")
plt.plot([t/100 for t in test_correct], label = "validation accuracy")
plt.title("accuracy at the end of each epoch")
plt.legend()
test_load_everything = DataLoader(test_data, batch_size= 10000, shuffle= False)
with torch.no_grad():
    correct = 0
    for X_test, y_test in test_load_everything:
        y_val = model(X_test)
        predicted = torch.max(y_val, 1)[1]
        correct += (predicted == y_test).sum()

# did for correct 
correct.item()/len(test_data) * 100
## Send New Image Thru The Model
# grab an image
test_data[4143] #tensor with an image in it ... at end ,it shows the label
# grab just the data 
test_data[4143][0]
#reshape it 
test_data[4143][0].reshape(28,28)
# show the image 

plt.imshow(test_data[4143][0].reshape(28,28))
# pass the image thru our model
model.eval()
with torch.no_grad():
    new_prediction = model(test_data[4143][0].view(1,1,28,28)) #batch size of 1,1 color channel, 28x28 image
    
# check the new prediction, get probabilities
new_prediction
new_prediction.argmax()

完整的py文件见GitHub - daichang01/neraual_network_learning at dev

相关推荐
狐凄9 分钟前
Python实例题:Python计算概率论
开发语言·python·概率论
Leo.yuan10 分钟前
数据湖是什么?数据湖和数据仓库的区别是什么?
大数据·运维·数据仓库·人工智能·信息可视化
Y31742911 分钟前
python Day46 学习(日志Day15复习)
python·学习·机器学习
这里有鱼汤12 分钟前
一文读懂量化交易中最常用的5种均线,附源码,建议收藏
后端·python
仙人掌_lz31 分钟前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
学不会就看31 分钟前
selenium学习实战【Python爬虫】
python·学习·selenium
q5673152333 分钟前
分布式增量爬虫实现方案
开发语言·分布式·爬虫·python
MILI元宇宙33 分钟前
纳米AI搜索与百度AI搜、豆包的核心差异解析
人工智能·百度
勤奋的知更鸟39 分钟前
LLaMA-Factory和python版本的兼容性问题解决
开发语言·python·llama-factory
SpikeKing44 分钟前
LLM - LlamaFactory 的大模型推理 踩坑记录
人工智能·llm·llamafactory