deeplearning with pytorch (五)

.view()方法在PyTorch中用于重塑张量。这里它被用来将单个样本的张量重塑成模型所期望的输入形状。具体地,1,1,28,28意味着创建一个新的张量,其中:

  • 第一个1代表批次大小(batch size),这里为1,因为你只预测一个样本。
  • 第二个1可能代表颜色通道的数量,这在处理灰度图像时常见,意味着每个像素只有一个颜色值。对于RGB图像,这个数字会是3。
  • 28,28代表图像的高度和宽度,这是典型的MNIST手写数字数据集的维度。
python 复制代码
#graph the loss at epoch
train_losses = [tl.item() for tl in train_losses]
plt.plot(train_losses, label= "training loss")
plt.plot(test_losses, label="validation loss")
plt.title("loss at epoch")
plt.legend()
#graph the accuracy at the end of each epoch
plt.plot([t/600 for t in train_correct], label = "training accuracy")
plt.plot([t/100 for t in test_correct], label = "validation accuracy")
plt.title("accuracy at the end of each epoch")
plt.legend()
test_load_everything = DataLoader(test_data, batch_size= 10000, shuffle= False)
with torch.no_grad():
    correct = 0
    for X_test, y_test in test_load_everything:
        y_val = model(X_test)
        predicted = torch.max(y_val, 1)[1]
        correct += (predicted == y_test).sum()

# did for correct 
correct.item()/len(test_data) * 100
## Send New Image Thru The Model
# grab an image
test_data[4143] #tensor with an image in it ... at end ,it shows the label
# grab just the data 
test_data[4143][0]
#reshape it 
test_data[4143][0].reshape(28,28)
# show the image 

plt.imshow(test_data[4143][0].reshape(28,28))
# pass the image thru our model
model.eval()
with torch.no_grad():
    new_prediction = model(test_data[4143][0].view(1,1,28,28)) #batch size of 1,1 color channel, 28x28 image
    
# check the new prediction, get probabilities
new_prediction
new_prediction.argmax()

完整的py文件见GitHub - daichang01/neraual_network_learning at dev

相关推荐
sealaugh321 小时前
AI(学习笔记第十二课) 使用langsmith的agents
人工智能·笔记·学习
科技百宝箱1 小时前
03-AI Agent全栈架构系统化落地指南
人工智能·架构
信息快讯1 小时前
【机器学习赋能的智能光子学器件系统研究与应用】
人工智能·神经网络·机器学习·光学
mit6.8241 小时前
[Agent开发平台] 后端的后端 | MySQL | Redis | RQ | idgen | ObjectStorage
人工智能·python
学编程的小虎1 小时前
用 Python + Vue3 打造超炫酷音乐播放器:网易云歌单爬取 + Three.js 波形可视化
开发语言·javascript·python
yunson_Liu2 小时前
编写Python脚本在域名过期10天内将域名信息发送到钉钉
开发语言·python·钉钉
GIOTTO情2 小时前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术2 小时前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码2 小时前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀2 小时前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类