deeplearning with pytorch (五)

.view()方法在PyTorch中用于重塑张量。这里它被用来将单个样本的张量重塑成模型所期望的输入形状。具体地,1,1,28,28意味着创建一个新的张量,其中:

  • 第一个1代表批次大小(batch size),这里为1,因为你只预测一个样本。
  • 第二个1可能代表颜色通道的数量,这在处理灰度图像时常见,意味着每个像素只有一个颜色值。对于RGB图像,这个数字会是3。
  • 28,28代表图像的高度和宽度,这是典型的MNIST手写数字数据集的维度。
python 复制代码
#graph the loss at epoch
train_losses = [tl.item() for tl in train_losses]
plt.plot(train_losses, label= "training loss")
plt.plot(test_losses, label="validation loss")
plt.title("loss at epoch")
plt.legend()
#graph the accuracy at the end of each epoch
plt.plot([t/600 for t in train_correct], label = "training accuracy")
plt.plot([t/100 for t in test_correct], label = "validation accuracy")
plt.title("accuracy at the end of each epoch")
plt.legend()
test_load_everything = DataLoader(test_data, batch_size= 10000, shuffle= False)
with torch.no_grad():
    correct = 0
    for X_test, y_test in test_load_everything:
        y_val = model(X_test)
        predicted = torch.max(y_val, 1)[1]
        correct += (predicted == y_test).sum()

# did for correct 
correct.item()/len(test_data) * 100
## Send New Image Thru The Model
# grab an image
test_data[4143] #tensor with an image in it ... at end ,it shows the label
# grab just the data 
test_data[4143][0]
#reshape it 
test_data[4143][0].reshape(28,28)
# show the image 

plt.imshow(test_data[4143][0].reshape(28,28))
# pass the image thru our model
model.eval()
with torch.no_grad():
    new_prediction = model(test_data[4143][0].view(1,1,28,28)) #batch size of 1,1 color channel, 28x28 image
    
# check the new prediction, get probabilities
new_prediction
new_prediction.argmax()

完整的py文件见GitHub - daichang01/neraual_network_learning at dev

相关推荐
EkihzniY5 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通5 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远5 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~6 小时前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾6 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵6 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile19956 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1236 小时前
第1章_LangGraph的背景与设计哲学
人工智能
计算机毕设匠心工作室6 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥6 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql