这是一个使用PyTorch实现的基于ResNet架构的视频超分辨率模型

import math
import functools
from operator import mul

import torch
import torch.nn.functional as F
from torch import nn, einsum

from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange

from make_a_video_pytorch.attend import Attend

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def mul_reduce(tup):
    return functools.reduce(mul, tup)

def divisible_by(numer, denom):
    return (numer % denom) == 0

mlist = nn.ModuleList

# for time conditioning

class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim, theta = 10000):
        super().__init__()
        self.theta = theta
        self.dim = dim

    def forward(self, x):
        dtype, device = x.dtype, x.device
        assert dtype == torch.float, 'input to sinusoidal pos emb must be a float type'

        half_dim = self.dim // 2
        emb = math.log(self.theta) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device = device, dtype = dtype) * -emb)
        emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
        return torch.cat((emb.sin(), emb.cos()), dim = -1).type(dtype)

# layernorm 3d

class RMSNorm(nn.Module):
    def __init__(self, chan, dim = 1):
        super().__init__()
        self.dim = dim
        self.gamma = nn.Parameter(torch.ones(chan))

    def forward(self, x):
        dim = self.dim
        right_ones = (dim + 1) if dim < 0 else (x.ndim - 1 - dim)
        gamma = self.gamma.reshape(-1, *((1,) * right_ones))
        return F.normalize(x, dim = dim) * (x.shape[dim] ** 0.5) * gamma

# feedforward

def shift_token(t):
    t, t_shift = t.chunk(2, dim = 1)
    t_shift = F.pad(t_shift, (0, 0, 0, 0, 1, -1), value = 0.)
    return torch.cat((t, t_shift), dim = 1)

class GEGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim = 1)
        return x * F.gelu(gate)

class FeedForward(nn.Module):
    def __init__(self, dim, mult = 4):
        super().__init__()

        inner_dim = int(dim * mult * 2 / 3)
        self.proj_in = nn.Sequential(
            nn.Conv3d(dim, inner_dim * 2, 1, bias = False),
            GEGLU()
        )

        self.proj_out = nn.Sequential(
            RMSNorm(inner_dim),
            nn.Conv3d(inner_dim, dim, 1, bias = False)
        )

    def forward(self, x, enable_time = True):

        is_video = x.ndim == 5
        enable_time &= is_video

        if not is_video:
            x = rearrange(x, 'b c h w -> b c 1 h w')

        x = self.proj_in(x)

        if enable_time:
            x = shift_token(x)

        out = self.proj_out(x)

        if not is_video:
            out = rearrange(out, 'b c 1 h w -> b c h w')

        return out

# best relative positional encoding

class ContinuousPositionBias(nn.Module):
    """ from https://arxiv.org/abs/2111.09883 """

    def __init__(
        self,
        *,
        dim,
        heads,
        num_dims = 1,
        layers = 2
    ):
        super().__init__()
        self.num_dims = num_dims

        self.net = nn.ModuleList([])
        self.net.append(nn.Sequential(nn.Linear(self.num_dims, dim), nn.SiLU()))

        for _ in range(layers - 1):
            self.net.append(nn.Sequential(nn.Linear(dim, dim), nn.SiLU()))

        self.net.append(nn.Linear(dim, heads))

    @property
    def device(self):
        return next(self.parameters()).device
    
    def forward(self, *dimensions):
        device = self.device

        shape = torch.tensor(dimensions, device = device)
        rel_pos_shape = 2 * shape - 1

        # calculate strides

        strides = torch.flip(rel_pos_shape, (0,)).cumprod(dim = -1)
        strides = torch.flip(F.pad(strides, (1, -1), value = 1), (0,))

        # get all positions and calculate all the relative distances

        positions = [torch.arange(d, device = device) for d in dimensions]
        grid = torch.stack(torch.meshgrid(*positions, indexing = 'ij'), dim = -1)
        grid = rearrange(grid, '... c -> (...) c')
        rel_dist = rearrange(grid, 'i c -> i 1 c') - rearrange(grid, 'j c -> 1 j c')

        # get all relative positions across all dimensions

        rel_positions = [torch.arange(-d + 1, d, device = device) for d in dimensions]
        rel_pos_grid = torch.stack(torch.meshgrid(*rel_positions, indexing = 'ij'), dim = -1)
        rel_pos_grid = rearrange(rel_pos_grid, '... c -> (...) c')

        # mlp input

        bias = rel_pos_grid.float()

        for layer in self.net:
            bias = layer(bias)

        # convert relative distances to indices of the bias

        rel_dist += (shape - 1)  # make sure all positive
        rel_dist *= strides
        rel_dist_indices = rel_dist.sum(dim = -1)

        # now select the bias for each unique relative position combination

        bias = bias[rel_dist_indices]
        return rearrange(bias, 'i j h -> h i j')

# helper classes

class Attention(nn.Module):
    def __init__(
        self,
        dim,
        dim_head = 64,
        heads = 8,
        flash = False,
        causal = False
    ):
        super().__init__()
        self.heads = heads
        self.scale = dim_head ** -0.5
        inner_dim = dim_head * heads

        self.attend = Attend(flash = flash, causal = causal)

        self.norm = RMSNorm(dim, dim = -1)

        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, dim, bias = False)

        nn.init.zeros_(self.to_out.weight.data) # identity with skip connection

    def forward(
        self,
        x,
        rel_pos_bias = None
    ):
        x = self.norm(x)

        q, k, v = self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))

        out = self.attend(q, k, v, bias = rel_pos_bias)

        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)

# main contribution - pseudo 3d conv

class PseudoConv3d(nn.Module):
    def __init__(
        self,
        dim,
        dim_out = None,
        kernel_size = 3,
        *,
        temporal_kernel_size = None,
        **kwargs
    ):
        super().__init__()
        dim_out = default(dim_out, dim)
        temporal_kernel_size = default(temporal_kernel_size, kernel_size)

        self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size = kernel_size, padding = kernel_size // 2)
        self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size = temporal_kernel_size, padding = temporal_kernel_size // 2) if kernel_size > 1 else None

        if exists(self.temporal_conv):
            nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity
            nn.init.zeros_(self.temporal_conv.bias.data)

    def forward(
        self,
        x,
        enable_time = True
    ):
        b, c, *_, h, w = x.shape

        is_video = x.ndim == 5
        enable_time &= is_video

        if is_video:
            x = rearrange(x, 'b c f h w -> (b f) c h w')

        x = self.spatial_conv(x)

        if is_video:
            x = rearrange(x, '(b f) c h w -> b c f h w', b = b)

        if not enable_time or not exists(self.temporal_conv):
            return x

        x = rearrange(x, 'b c f h w -> (b h w) c f')

        x = self.temporal_conv(x)

        x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w)

        return x

# factorized spatial temporal attention from Ho et al.

class SpatioTemporalAttention(nn.Module):
    def __init__(
        self,
        dim,
        *,
        dim_head = 64,
        heads = 8,
        add_feed_forward = True,
        ff_mult = 4,
        pos_bias = True,
        flash = False,
        causal_time_attn = False
    ):
        super().__init__()
        assert not (flash and pos_bias), 'learned positional attention bias is not compatible with flash attention'

        self.spatial_attn = Attention(dim = dim, dim_head = dim_head, heads = heads, flash = flash)
        self.spatial_rel_pos_bias = ContinuousPositionBias(dim = dim // 2, heads = heads, num_dims = 2) if pos_bias else None

        self.temporal_attn = Attention(dim = dim, dim_head = dim_head, heads = heads, flash = flash, causal = causal_time_attn)
        self.temporal_rel_pos_bias = ContinuousPositionBias(dim = dim // 2, heads = heads, num_dims = 1) if pos_bias else None

        self.has_feed_forward = add_feed_forward
        if not add_feed_forward:
            return

        self.ff = FeedForward(dim = dim, mult = ff_mult)

    def forward(
        self,
        x,
        enable_time = True
    ):
        b, c, *_, h, w = x.shape
        is_video = x.ndim == 5
        enable_time &= is_video

        if is_video:
            x = rearrange(x, 'b c f h w -> (b f) (h w) c')
        else:
            x = rearrange(x, 'b c h w -> b (h w) c')

        space_rel_pos_bias = self.spatial_rel_pos_bias(h, w) if exists(self.spatial_rel_pos_bias) else None

        x = self.spatial_attn(x, rel_pos_bias = space_rel_pos_bias) + x

        if is_video:
            x = rearrange(x, '(b f) (h w) c -> b c f h w', b = b, h = h, w = w)
        else:
            x = rearrange(x, 'b (h w) c -> b c h w', h = h, w = w)

        if enable_time:

            x = rearrange(x, 'b c f h w -> (b h w) f c')

            time_rel_pos_bias = self.temporal_rel_pos_bias(x.shape[1]) if exists(self.temporal_rel_pos_bias) else None

            x = self.temporal_attn(x, rel_pos_bias = time_rel_pos_bias) + x

            x = rearrange(x, '(b h w) f c -> b c f h w', w = w, h = h)

        if self.has_feed_forward:
            x = self.ff(x, enable_time = enable_time) + x

        return x

# resnet block

class Block(nn.Module):
    def __init__(
        self,
        dim,
        dim_out,
        kernel_size = 3,
        temporal_kernel_size = None,
        groups = 8
    ):
        super().__init__()
        self.project = PseudoConv3d(dim, dim_out, 3)
        self.norm = nn.GroupNorm(groups, dim_out)
        self.act = nn.SiLU()

    def forward(
        self,
        x,
        scale_shift = None,
        enable_time = False
    ):
        x = self.project(x, enable_time = enable_time)
        x = self.norm(x)

        if exists(scale_shift):
            scale, shift = scale_shift
            x = x * (scale + 1) + shift

        return self.act(x)

class ResnetBlock(nn.Module):
    def __init__(
        self,
        dim,
        dim_out,
        *,
        timestep_cond_dim = None,
        groups = 8
    ):
        super().__init__()

        self.timestep_mlp = None

        if exists(timestep_cond_dim):
            self.timestep_mlp = nn.Sequential(
                nn.SiLU(),
                nn.Linear(timestep_cond_dim, dim_out * 2)
            )

        self.block1 = Block(dim, dim_out, groups = groups)
        self.block2 = Block(dim_out, dim_out, groups = groups)
        self.res_conv = PseudoConv3d(dim, dim_out, 1) if dim != dim_out else nn.Identity()

    def forward(
        self,
        x,
        timestep_emb = None,
        enable_time = True
    ):
        assert not (exists(timestep_emb) ^ exists(self.timestep_mlp))

        scale_shift = None

        if exists(self.timestep_mlp) and exists(timestep_emb):
            time_emb = self.timestep_mlp(timestep_emb)
            to_einsum_eq = 'b c 1 1 1' if x.ndim == 5 else 'b c 1 1'
            time_emb = rearrange(time_emb, f'b c -> {to_einsum_eq}')
            scale_shift = time_emb.chunk(2, dim = 1)

        h = self.block1(x, scale_shift = scale_shift, enable_time = enable_time)

        h = self.block2(h, enable_time = enable_time)

        return h + self.res_conv(x)

# pixelshuffle upsamples and downsamples
# where time dimension can be configured

class Downsample(nn.Module):
    def __init__(
        self,
        dim,
        downsample_space = True,
        downsample_time = False,
        nonlin = False
    ):
        super().__init__()
        assert downsample_space or downsample_time

        self.down_space = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = 2, p2 = 2),
            nn.Conv2d(dim * 4, dim, 1, bias = False),
            nn.SiLU() if nonlin else nn.Identity()
        ) if downsample_space else None

        self.down_time = nn.Sequential(
            Rearrange('b c (f p) h w -> b (c p) f h w', p = 2),
            nn.Conv3d(dim * 2, dim, 1, bias = False),
            nn.SiLU() if nonlin else nn.Identity()
        ) if downsample_time else None

    def forward(
        self,
        x,
        enable_time = True
    ):
        is_video = x.ndim == 5

        if is_video:
            x = rearrange(x, 'b c f h w -> b f c h w')
            x, ps = pack([x], '* c h w')

        if exists(self.down_space):
            x = self.down_space(x)

        if is_video:
            x, = unpack(x, ps, '* c h w')
            x = rearrange(x, 'b f c h w -> b c f h w')

        if not is_video or not exists(self.down_time) or not enable_time:
            return x

        x = self.down_time(x)

        return x

class Upsample(nn.Module):
    def __init__(
        self,
        dim,
        upsample_space = True,
        upsample_time = False,
        nonlin = False
    ):
        super().__init__()
        assert upsample_space or upsample_time

        self.up_space = nn.Sequential(
            nn.Conv2d(dim, dim * 4, 1),
            nn.SiLU() if nonlin else nn.Identity(),
            Rearrange('b (c p1 p2) h w -> b c (h p1) (w p2)', p1 = 2, p2 = 2)
        ) if upsample_space else None

        self.up_time = nn.Sequential(
            nn.Conv3d(dim, dim * 2, 1),
            nn.SiLU() if nonlin else nn.Identity(),
            Rearrange('b (c p) f h w -> b c (f p) h w', p = 2)
        ) if upsample_time else None

        self.init_()

    def init_(self):
        if exists(self.up_space):
            self.init_conv_(self.up_space[0], 4)

        if exists(self.up_time):
            self.init_conv_(self.up_time[0], 2)

    def init_conv_(self, conv, factor):
        o, *remain_dims = conv.weight.shape
        conv_weight = torch.empty(o // factor, *remain_dims)
        nn.init.kaiming_uniform_(conv_weight)
        conv_weight = repeat(conv_weight, 'o ... -> (o r) ...', r = factor)

        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def forward(
        self,
        x,
        enable_time = True
    ):
        is_video = x.ndim == 5

        if is_video:
            x = rearrange(x, 'b c f h w -> b f c h w')
            x, ps = pack([x], '* c h w')

        if exists(self.up_space):
            x = self.up_space(x)

        if is_video:
            x, = unpack(x, ps, '* c h w')
            x = rearrange(x, 'b f c h w -> b c f h w')

        if not is_video or not exists(self.up_time) or not enable_time:
            return x

        x = self.up_time(x)

        return x

# space time factorized 3d unet

class SpaceTimeUnet(nn.Module):
    def __init__(
        self,
        *,
        dim,
        channels = 3,
        dim_mult = (1, 2, 4, 8),
        self_attns = (False, False, False, True),
        temporal_compression = (False, True, True, True),
        resnet_block_depths = (2, 2, 2, 2),
        attn_dim_head = 64,
        attn_heads = 8,
        condition_on_timestep = True,
        attn_pos_bias = True,
        flash_attn = False,
        causal_time_attn = False
    ):
        super().__init__()
        assert len(dim_mult) == len(self_attns) == len(temporal_compression) == len(resnet_block_depths)
        num_layers = len(dim_mult)

        dims = [dim, *map(lambda mult: mult * dim, dim_mult)]
        dim_in_out = zip(dims[:-1], dims[1:])

        # determine the valid multiples of the image size and frames of the video

        self.frame_multiple = 2 ** sum(tuple(map(int, temporal_compression)))
        self.image_size_multiple = 2 ** num_layers

        # timestep conditioning for DDPM, not to be confused with the time dimension of the video

        self.to_timestep_cond = None
        timestep_cond_dim = (dim * 4) if condition_on_timestep else None

        if condition_on_timestep:
            self.to_timestep_cond = nn.Sequential(
                SinusoidalPosEmb(dim),
                nn.Linear(dim, timestep_cond_dim),
                nn.SiLU()
            )

        # layers

        self.downs = mlist([])
        self.ups = mlist([])

        attn_kwargs = dict(
            dim_head = attn_dim_head,
            heads = attn_heads,
            pos_bias = attn_pos_bias,
            flash = flash_attn,
            causal_time_attn = causal_time_attn
        )

        mid_dim = dims[-1]

        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, timestep_cond_dim = timestep_cond_dim)
        self.mid_attn = SpatioTemporalAttention(dim = mid_dim, **attn_kwargs)
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, timestep_cond_dim = timestep_cond_dim)

        for _, self_attend, (dim_in, dim_out), compress_time, resnet_block_depth in zip(range(num_layers), self_attns, dim_in_out, temporal_compression, resnet_block_depths):
            assert resnet_block_depth >= 1

            self.downs.append(mlist([
                ResnetBlock(dim_in, dim_out, timestep_cond_dim = timestep_cond_dim),
                mlist([ResnetBlock(dim_out, dim_out) for _ in range(resnet_block_depth)]),
                SpatioTemporalAttention(dim = dim_out, **attn_kwargs) if self_attend else None,
                Downsample(dim_out, downsample_time = compress_time)
            ]))

            self.ups.append(mlist([
                ResnetBlock(dim_out * 2, dim_in, timestep_cond_dim = timestep_cond_dim),
                mlist([ResnetBlock(dim_in + (dim_out if ind == 0 else 0), dim_in) for ind in range(resnet_block_depth)]),
                SpatioTemporalAttention(dim = dim_in, **attn_kwargs) if self_attend else None,
                Upsample(dim_out, upsample_time = compress_time)
                
            ]))

        self.skip_scale = 2 ** -0.5 # paper shows faster convergence

        self.conv_in = PseudoConv3d(dim = channels, dim_out = dim, kernel_size = 7, temporal_kernel_size = 3)
        self.conv_out = PseudoConv3d(dim = dim, dim_out = channels, kernel_size = 3, temporal_kernel_size = 3)

    def forward(
        self,
        x,
        timestep = None,
        enable_time = True
    ):

        # some asserts

        assert not (exists(self.to_timestep_cond) ^ exists(timestep))
        is_video = x.ndim == 5

        if enable_time and is_video:
            frames = x.shape[2]
            assert divisible_by(frames, self.frame_multiple), f'number of frames on the video ({frames}) must be divisible by the frame multiple ({self.frame_multiple})'

        height, width = x.shape[-2:]
        assert divisible_by(height, self.image_size_multiple) and divisible_by(width, self.image_size_multiple), f'height and width of the image or video must be a multiple of {self.image_size_multiple}'

        # main logic

        t = self.to_timestep_cond(rearrange(timestep, '... -> (...)')) if exists(timestep) else None

        x = self.conv_in(x, enable_time = enable_time)

        hiddens = []

        for init_block, blocks, maybe_attention, downsample in self.downs:
            x = init_block(x, t, enable_time = enable_time)

            hiddens.append(x.clone())

            for block in blocks:
                x = block(x, enable_time = enable_time)

            if exists(maybe_attention):
                x = maybe_attention(x, enable_time = enable_time)

            hiddens.append(x.clone())

            x = downsample(x, enable_time = enable_time)

        x = self.mid_block1(x, t, enable_time = enable_time)
        x = self.mid_attn(x, enable_time = enable_time)
        x = self.mid_block2(x, t, enable_time = enable_time)

        for init_block, blocks, maybe_attention, upsample in reversed(self.ups):
            x = upsample(x, enable_time = enable_time)

            x = torch.cat((hiddens.pop() * self.skip_scale, x), dim = 1)

            x = init_block(x, t, enable_time = enable_time)

            x = torch.cat((hiddens.pop() * self.skip_scale, x), dim = 1)

            for block in blocks:
                x = block(x, enable_time = enable_time)

            if exists(maybe_attention):
                x = maybe_attention(x, enable_time = enable_time)

        x = self.conv_out(x, enable_time = enable_time)
        return x

这是一个使用PyTorch实现的基于ResNet架构的视频超分辨率模型。该模型接收一个尺寸为(B, C, T, H, W)的输入视频,其中B是批量大小,C是通道数,T是帧数,H是高度,W是宽度。模型输出一个与输入尺寸相同的的高分辨率视频。

该模型包括以下组件:

  1. 一组降采样层,用于减小输入视频的空间维度。

  2. 一组残差块,用于逐帧处理视频。

  3. 一组注意力机制,用于关注视频的空间和时间维度。

  4. 一组上采样层,用于增加视频的空间维度。

  5. 一组跳连接,用于连接降采样和上采样路径。

  6. 两个卷积层,用于逐帧处理视频并输出高分辨率视频。

该模型可以使用标准的视频超分辨率任务进行训练,例如NTIRE 2023视频超分辨率挑战赛。

相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班5 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型