关于 形状信息提取的说明

为什么以下代码提取了形状信息

python 复制代码
self.shape_or_objectness = nn.Sequential(
    nn.Linear(2, 64),
    nn.ReLU(),
    nn.Linear(64, emb_dim),
    nn.ReLU(),
    nn.Linear(emb_dim, 1 ** 2 * emb_dim)
)

shape = self.shape_or_objectness(box_hw).reshape(
    bs, -1, self.emb_dim 
)
1.输入 box_hw
  • box_hw 是一个形状为 [bs, num_objects, 2] 的张量,表示每个批次的每个对象的宽度和高度。
  • 例如,box_hw 的值可能是:
python 复制代码
box_hw = torch.tensor([[[50, 100], [30, 60], [40, 80]]])  # [bs, num_objects, 2]
2. 多层感知机(MLP)
  • self.shape_or_objectness 是一个多层感知机(MLP),由三层全连接层和两个 ReLU 激活函数组成。
  • 具体结构如下:
    • 第一层:nn.Linear(2, 64),将输入从 2 维映射到 64 维。
    • 第二层:nn.Linear(64, emb_dim),将输入从 64 维映射到 emb_dim 维。
    • 第三层:nn.Linear(emb_dim, 1 ** 2 * emb_dim),将输入从 emb_dim 维映射到 emb_dim 维。
3. 提取形状信息
  • self.shape_or_objectness(box_hw) 将 box_hw 输入到 MLP 中,提取形状信息。
  • 具体步骤如下:
    • 输入 box_hw 的形状为 [bs, num_objects, 2]
    • 将 box_hw 展平为 [bs * num_objects, 2],以便输入到 MLP 中。
    • 第一层:nn.Linear(2, 64),输出形状为 [bs * num_objects, 64]
    • 第二层:nn.Linear(64, emb_dim),输出形状为 [bs * num_objects, emb_dim]
    • 第三层:nn.Linear(emb_dim, 1 ** 2 * emb_dim),输出形状为 [bs * num_objects, emb_dim]
    • 最终输出形状为 [bs, num_objects, emb_dim]
4. 形状信息的现实含义
  • 通过 MLP 提取的形状信息包含了边界框的宽度和高度的特征表示。
  • 这些特征表示可以用于后续的处理,例如对象检测和分类。

示例代码:

python 复制代码
import torch
from torch import nn

class GeCo(nn.Module):
    def __init__(self, emb_dim):
        super(GeCo, self).__init__()
        self.emb_dim = emb_dim
        self.shape_or_objectness = nn.Sequential(
            nn.Linear(2, 64),
            nn.ReLU(),
            nn.Linear(64, emb_dim),
            nn.ReLU(),
            nn.Linear(emb_dim, 1 ** 2 * emb_dim)
        )

    def forward(self, box_hw):
        shape = self.shape_or_objectness(box_hw).reshape(
            box_hw.size(0), -1, self.emb_dim 
        )
        return shape

# 创建 GeCo 实例
model = GeCo(emb_dim=256)

# 创建示例输入张量
box_hw = torch.tensor([[[50, 100], [30, 60], [40, 80]]], dtype=torch.float32)  # [bs, num_objects, 2]

# 调用 forward 方法
shape = model.forward(box_hw)

print("Shape:", shape)
print("Shape shape:", shape.shape)
python 复制代码
Shape: tensor([[[ 0.1234,  0.5678, ...,  0.9101],
                [ 0.2345,  0.6789, ...,  0.1011],
                [ 0.3456,  0.7890, ...,  0.1122]]])
Shape shape: torch.Size([1, 3, 256])

现实含义

  • 输入 box_hw 是一个形状为 [bs, num_objects, 2] 的张量,表示每个批次的每个对象的宽度和高度。
  • 输出 shape 是一个形状为 [bs, num_objects, emb_dim] 的张量,表示每个批次的每个对象的形状特征。
  • 通过 MLP 提取的形状特征包含了边界框的宽度和高度的特征表示,可以用于后续的处理。
相关推荐
@心都21 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫23 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
奔跑吧邓邓子25 分钟前
【Python爬虫(12)】正则表达式:Python爬虫的进阶利刃
爬虫·python·正则表达式·进阶·高级
码界筑梦坊1 小时前
基于Flask的京东商品信息可视化分析系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
pianmian11 小时前
python绘图之箱型图
python·信息可视化·数据分析
csbDD1 小时前
2025年网络安全(黑客技术)三个月自学手册
linux·网络·python·安全·web安全
kcarly2 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
Jackilina_Stone2 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
赔罪3 小时前
Python 高级特性-切片
开发语言·python
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习