关于 形状信息提取的说明

为什么以下代码提取了形状信息

python 复制代码
self.shape_or_objectness = nn.Sequential(
    nn.Linear(2, 64),
    nn.ReLU(),
    nn.Linear(64, emb_dim),
    nn.ReLU(),
    nn.Linear(emb_dim, 1 ** 2 * emb_dim)
)

shape = self.shape_or_objectness(box_hw).reshape(
    bs, -1, self.emb_dim 
)
1.输入 box_hw
  • box_hw 是一个形状为 [bs, num_objects, 2] 的张量,表示每个批次的每个对象的宽度和高度。
  • 例如,box_hw 的值可能是:
python 复制代码
box_hw = torch.tensor([[[50, 100], [30, 60], [40, 80]]])  # [bs, num_objects, 2]
2. 多层感知机(MLP)
  • self.shape_or_objectness 是一个多层感知机(MLP),由三层全连接层和两个 ReLU 激活函数组成。
  • 具体结构如下:
    • 第一层:nn.Linear(2, 64),将输入从 2 维映射到 64 维。
    • 第二层:nn.Linear(64, emb_dim),将输入从 64 维映射到 emb_dim 维。
    • 第三层:nn.Linear(emb_dim, 1 ** 2 * emb_dim),将输入从 emb_dim 维映射到 emb_dim 维。
3. 提取形状信息
  • self.shape_or_objectness(box_hw) 将 box_hw 输入到 MLP 中,提取形状信息。
  • 具体步骤如下:
    • 输入 box_hw 的形状为 [bs, num_objects, 2]
    • 将 box_hw 展平为 [bs * num_objects, 2],以便输入到 MLP 中。
    • 第一层:nn.Linear(2, 64),输出形状为 [bs * num_objects, 64]
    • 第二层:nn.Linear(64, emb_dim),输出形状为 [bs * num_objects, emb_dim]
    • 第三层:nn.Linear(emb_dim, 1 ** 2 * emb_dim),输出形状为 [bs * num_objects, emb_dim]
    • 最终输出形状为 [bs, num_objects, emb_dim]
4. 形状信息的现实含义
  • 通过 MLP 提取的形状信息包含了边界框的宽度和高度的特征表示。
  • 这些特征表示可以用于后续的处理,例如对象检测和分类。

示例代码:

python 复制代码
import torch
from torch import nn

class GeCo(nn.Module):
    def __init__(self, emb_dim):
        super(GeCo, self).__init__()
        self.emb_dim = emb_dim
        self.shape_or_objectness = nn.Sequential(
            nn.Linear(2, 64),
            nn.ReLU(),
            nn.Linear(64, emb_dim),
            nn.ReLU(),
            nn.Linear(emb_dim, 1 ** 2 * emb_dim)
        )

    def forward(self, box_hw):
        shape = self.shape_or_objectness(box_hw).reshape(
            box_hw.size(0), -1, self.emb_dim 
        )
        return shape

# 创建 GeCo 实例
model = GeCo(emb_dim=256)

# 创建示例输入张量
box_hw = torch.tensor([[[50, 100], [30, 60], [40, 80]]], dtype=torch.float32)  # [bs, num_objects, 2]

# 调用 forward 方法
shape = model.forward(box_hw)

print("Shape:", shape)
print("Shape shape:", shape.shape)
python 复制代码
Shape: tensor([[[ 0.1234,  0.5678, ...,  0.9101],
                [ 0.2345,  0.6789, ...,  0.1011],
                [ 0.3456,  0.7890, ...,  0.1122]]])
Shape shape: torch.Size([1, 3, 256])

现实含义

  • 输入 box_hw 是一个形状为 [bs, num_objects, 2] 的张量,表示每个批次的每个对象的宽度和高度。
  • 输出 shape 是一个形状为 [bs, num_objects, emb_dim] 的张量,表示每个批次的每个对象的形状特征。
  • 通过 MLP 提取的形状特征包含了边界框的宽度和高度的特征表示,可以用于后续的处理。
相关推荐
深蓝易网25 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
带娃的IT创业者28 分钟前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署
xiangzhihong833 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
Bruce-li__34 分钟前
深入理解Python asyncio:从入门到实战,掌握异步编程精髓
网络·数据库·python
九月镇灵将1 小时前
6.git项目实现变更拉取与上传
git·python·scrapy·scrapyd·gitpython·gerapy
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
小张学Python1 小时前
AI数字人Heygem:口播与唇形同步的福音,无需docker,无需配置环境,一键整合包来了
python·数字人·heygem
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈1 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net