探索DocLLM:摩根大通推出的新型文档处理语言模型

探索DocLLM:摩根大通推出的新型文档处理语言模型

摩根大通近日推出了一款名为DocLLM的新型语言模型,专为处理具有复杂布局的文档而设计。该模型是传统大型语言模型的轻量级版本,专注于理解丰富的文档内容。与使用昂贵的图像编码器的其他模型不同,DocLLM通过文本框的位置和大小(边界框信息)来理解页面上文本的布局,这使其在处理各种布局的文档时更为高效。

关键亮点:

  • DocLLM是标准大型语言模型的轻量级扩展,能够同时捕获空间布局和文本语义,而无需使用成本高昂的图像编码器。
  • DocLLM提供1B和7B两种规模的版本,能够在四个未见过的数据集中,相较于Llama2--7B模型,提升15%至61%的性能。
  • 在使用零样本指令的情况下,DocLLM-7B在16个数据集中的12个上超越了GPT-4和Llama2,特别擅长关键信息提取(KIE)和文档分类(CLS)任务。

技术特色:

  • DocLLM优化了对视觉文档分析的方法,通过仅依赖边界框数据整合空间布局,避免了昂贵的视觉编码器的使用,使模型更加紧凑,处理时间更高效。
  • 通过将标准变换器中的注意力机制重新配置为独立的矩阵,DocLLM能够在文本和空间布局之间建立独特的对齐,捕获这两个元素之间的依赖关系。
  • 开发了一种专注于填充文本段落的预训练目标,使模型能够有效处理视觉文档中常见的不规则布局和多样化内容。

应用范围:

  • DocLLM通过大规模指令数据集的细化预训练,覆盖了四个核心的文档智能任务:关键信息提取、自然语言推理、视觉问答和文档分类。
  • 在指令调优阶段,共使用了16个具有相应OCR数据的单页和多页文档数据集。

性能对比:

  • DocLLM在14个数据集中超越了当前最先进的语言模型,并且在五个先前未见过的数据集中表现良好。
  • 特别是,在不同数据集的不同切分(SDDS)设置中,DocLLM-7B在使用零样本指令的情况下,在12个数据集中超越了GPT-4和Llama2。

DocLLM通过其独特的设计和优化,为处理复杂布局的文档提供了一个高效且性能卓越的新选择,尤其在关键信息提取和文档分类任务上展现了其强大的能力。

相关推荐
Oliverro4 分钟前
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
网络·人工智能
芯盾时代4 小时前
安全大模型智驱网络和数据安全效能跃迁
网络·人工智能·安全·网络安全
彩讯股份3006345 小时前
打造多模态交互新范式|彩讯股份中标2025年中国移动和留言平台AI智能体研发项目
人工智能
思通数科大数据舆情5 小时前
工业安全零事故的智能守护者:一体化AI智能安防平台
人工智能·安全·目标检测·计算机视觉·目标跟踪·数据挖掘·知识图谱
AI360labs_atyun6 小时前
2025 高考:AI 都在哪些地方发挥了作用
人工智能·科技·ai·高考
Yxh181377845547 小时前
短视频矩阵系统技术saas源头6年开发构架
人工智能·矩阵
m0_634448897 小时前
图上合成:用于大型语言模型持续预训练的知识合成数据生成
人工智能·语言模型·自然语言处理
张较瘦_8 小时前
[论文阅读] 人工智能 | 利用负信号蒸馏:用REDI框架提升LLM推理能力
论文阅读·人工智能
1296004528 小时前
机器学习的可解释性
人工智能·深度学习·自然语言处理·transformer
何中应8 小时前
第一个人工智能(AI)问答Demo
java·人工智能·语言模型