探索DocLLM:摩根大通推出的新型文档处理语言模型

探索DocLLM:摩根大通推出的新型文档处理语言模型

摩根大通近日推出了一款名为DocLLM的新型语言模型,专为处理具有复杂布局的文档而设计。该模型是传统大型语言模型的轻量级版本,专注于理解丰富的文档内容。与使用昂贵的图像编码器的其他模型不同,DocLLM通过文本框的位置和大小(边界框信息)来理解页面上文本的布局,这使其在处理各种布局的文档时更为高效。

关键亮点:

  • DocLLM是标准大型语言模型的轻量级扩展,能够同时捕获空间布局和文本语义,而无需使用成本高昂的图像编码器。
  • DocLLM提供1B和7B两种规模的版本,能够在四个未见过的数据集中,相较于Llama2--7B模型,提升15%至61%的性能。
  • 在使用零样本指令的情况下,DocLLM-7B在16个数据集中的12个上超越了GPT-4和Llama2,特别擅长关键信息提取(KIE)和文档分类(CLS)任务。

技术特色:

  • DocLLM优化了对视觉文档分析的方法,通过仅依赖边界框数据整合空间布局,避免了昂贵的视觉编码器的使用,使模型更加紧凑,处理时间更高效。
  • 通过将标准变换器中的注意力机制重新配置为独立的矩阵,DocLLM能够在文本和空间布局之间建立独特的对齐,捕获这两个元素之间的依赖关系。
  • 开发了一种专注于填充文本段落的预训练目标,使模型能够有效处理视觉文档中常见的不规则布局和多样化内容。

应用范围:

  • DocLLM通过大规模指令数据集的细化预训练,覆盖了四个核心的文档智能任务:关键信息提取、自然语言推理、视觉问答和文档分类。
  • 在指令调优阶段,共使用了16个具有相应OCR数据的单页和多页文档数据集。

性能对比:

  • DocLLM在14个数据集中超越了当前最先进的语言模型,并且在五个先前未见过的数据集中表现良好。
  • 特别是,在不同数据集的不同切分(SDDS)设置中,DocLLM-7B在使用零样本指令的情况下,在12个数据集中超越了GPT-4和Llama2。

DocLLM通过其独特的设计和优化,为处理复杂布局的文档提供了一个高效且性能卓越的新选择,尤其在关键信息提取和文档分类任务上展现了其强大的能力。

相关推荐
阡之尘埃1 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力3 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20213 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧34 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽4 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_4 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客4 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI4 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-5 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh5 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能