探索DocLLM:摩根大通推出的新型文档处理语言模型

探索DocLLM:摩根大通推出的新型文档处理语言模型

摩根大通近日推出了一款名为DocLLM的新型语言模型,专为处理具有复杂布局的文档而设计。该模型是传统大型语言模型的轻量级版本,专注于理解丰富的文档内容。与使用昂贵的图像编码器的其他模型不同,DocLLM通过文本框的位置和大小(边界框信息)来理解页面上文本的布局,这使其在处理各种布局的文档时更为高效。

关键亮点:

  • DocLLM是标准大型语言模型的轻量级扩展,能够同时捕获空间布局和文本语义,而无需使用成本高昂的图像编码器。
  • DocLLM提供1B和7B两种规模的版本,能够在四个未见过的数据集中,相较于Llama2--7B模型,提升15%至61%的性能。
  • 在使用零样本指令的情况下,DocLLM-7B在16个数据集中的12个上超越了GPT-4和Llama2,特别擅长关键信息提取(KIE)和文档分类(CLS)任务。

技术特色:

  • DocLLM优化了对视觉文档分析的方法,通过仅依赖边界框数据整合空间布局,避免了昂贵的视觉编码器的使用,使模型更加紧凑,处理时间更高效。
  • 通过将标准变换器中的注意力机制重新配置为独立的矩阵,DocLLM能够在文本和空间布局之间建立独特的对齐,捕获这两个元素之间的依赖关系。
  • 开发了一种专注于填充文本段落的预训练目标,使模型能够有效处理视觉文档中常见的不规则布局和多样化内容。

应用范围:

  • DocLLM通过大规模指令数据集的细化预训练,覆盖了四个核心的文档智能任务:关键信息提取、自然语言推理、视觉问答和文档分类。
  • 在指令调优阶段,共使用了16个具有相应OCR数据的单页和多页文档数据集。

性能对比:

  • DocLLM在14个数据集中超越了当前最先进的语言模型,并且在五个先前未见过的数据集中表现良好。
  • 特别是,在不同数据集的不同切分(SDDS)设置中,DocLLM-7B在使用零样本指令的情况下,在12个数据集中超越了GPT-4和Llama2。

DocLLM通过其独特的设计和优化,为处理复杂布局的文档提供了一个高效且性能卓越的新选择,尤其在关键信息提取和文档分类任务上展现了其强大的能力。

相关推荐
舒一笑7 分钟前
TorchV企业级AI知识引擎的三大功能支柱:从构建到运营的技术解析
人工智能
掘金酱9 分钟前
🎉 2025年8月金石计划开奖公示
前端·人工智能·后端
鹏多多1 小时前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能
aneasystone本尊1 小时前
盘点 Chat2Graph 中的专家和工具
人工智能
Baihai_IDP2 小时前
AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究
人工智能·面试·llm
大模型真好玩3 小时前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek
黎燃11 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊12 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠13 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶16 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc