基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
l1t4 分钟前
将利用30行X算法求解数独的python程序转成DuckDB自定义函数并比较性能
数据库·python·算法·duckdb
CodeLinghu7 分钟前
「 LLM实战 - 企业 」企业级LangGraph实战项目搭建
人工智能·llm
jackylzh13 分钟前
PyCharm中测试、训练YOLO方法
人工智能·yolo·计算机视觉
说私域19 分钟前
开源活动报名AI智能客服AI智能名片预约服务小程序在精神服务中的应用场景研究
人工智能·小程序
sandwu29 分钟前
AI自动化测试(二)—— Playwright-MCP搭建自动化UI测试(browser-use&midscene对比)
人工智能·ui·自动化·playwright
DeepVis Research36 分钟前
【Autonomous Driving/Sim】2026年度自动驾驶极端场景与车辆动力学仿真基准索引 (Benchmark Index)
人工智能·物联网·机器学习·自动驾驶·数据集
花间流风39 分钟前
【王阳明代数讲义】2025年CSDN花间流风博文技术汇总
算法·年终总结·模型·情感分析·王阳明代数
DuHz1 小时前
亚毫米波FMCW脉冲多普勒雷达:粒子云动态特性表征技术深度解析
论文阅读·物联网·算法·信息与通信·毫米波雷达
xixixi777771 小时前
SoC芯片本质——“系统级集成”
人工智能·机器学习·架构·pc·soc·集成·芯片
hz_zhangrl1 小时前
CCF-GESP 等级考试 2025年12月认证C++二级真题解析
c++·算法·gesp·gesp2025年12月·c++二级