基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
qq_417129253 分钟前
C++中的桥接模式变体
开发语言·c++·算法
森之鸟7 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战14 分钟前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战14 分钟前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲19 分钟前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
Bamtone202526 分钟前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch28 分钟前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程
_waylau37 分钟前
【HarmonyOS NEXT+AI】问答08:仓颉编程语言是中文编程语言吗?
人工智能·华为·harmonyos·鸿蒙·仓颉编程语言·鸿蒙生态·鸿蒙6
YuTaoShao40 分钟前
【LeetCode 每日一题】3010. 将数组分成最小总代价的子数组 I——(解法二)排序
算法·leetcode·排序算法
攻城狮7号1 小时前
Kimi 发布并开源 K2.5 模型:开始在逻辑和干活上卷你了
人工智能·ai编程·视觉理解·kimi code·kimi k2.5·agent 集群