基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
OpenCSG几秒前
XNet :面向大模型与数据集的块级存储与传输能力
人工智能·开源·opencsg·agentichub
文档伴侣1 分钟前
体验访答:我的私有知识库新选择
人工智能·aigc·ocr
海边夕阳20061 分钟前
【每天一个AI小知识】:什么是自注意力?
人工智能·经验分享·机器学习·强化学习·自注意力
机器学习之心1 分钟前
基于PSO-GA混合算法的施工进度计划多目标优化,以最小化总成本并实现资源均衡,满足工期约束和资源限制,MATLAB代码
算法·matlab·多目标优化·pso-ga混合算法
bbq粉刷匠4 分钟前
Java--二叉树概念及其基础应用
java·数据结构·算法
CodeByV6 分钟前
【算法题】前缀和
算法
DX_水位流量监测7 分钟前
城市易涝点水位雨量监测设备技术体系与实践应用
大数据·运维·服务器·网络·人工智能
2501_921649499 分钟前
日本股票 API 对接,接入东京证券交易所(TSE)实现 K 线 MACD 指标
大数据·人工智能·python·websocket·金融
weixin_4462608511 分钟前
探索大语言模型:基础知识与应用指南
人工智能·语言模型·自然语言处理
大山同学11 分钟前
薄膜透光度原理
linux·运维·人工智能