基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
天选之女wow23 分钟前
【Hard——Day8】65.有效数字、68.文本左右对齐、76.最小覆盖子串
linux·运维·redis·算法·leetcode
AI大模型学徒32 分钟前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
HyperAI超神经36 分钟前
【TVM 教程】优化大语言模型
人工智能·语言模型·自然语言处理·cpu·gpu·编程语言·tvm
musk121240 分钟前
文本分析与挖掘,nlp,中文产品评论情感分析最佳实践方案
人工智能·自然语言处理
专注数据的痴汉42 分钟前
「数据获取」《中国商务年鉴》(2004-2024)
大数据·人工智能·信息可视化
前端小L1 小时前
图论专题(十八):“逆向”拓扑排序——寻找图中的「最终安全状态」
数据结构·算法·安全·深度优先·图论·宽度优先
前端小L1 小时前
图论专题(十七):从“判定”到“构造”——生成一份完美的「课程表 II」
算法·矩阵·深度优先·图论·宽度优先
limenga1021 小时前
奇异值分解(SVD):深度理解神经网络的内在结构
人工智能·深度学习·神经网络·机器学习
双向331 小时前
为什么Doubao-Seed-Code成为我的主力编程助手?实测与深度解析
人工智能
秋邱1 小时前
【机器学习】深入解析线性回归模型
人工智能·机器学习·线性回归