基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
aiguangyuan2 分钟前
中文分词与文本分析实战指南
人工智能·python·nlp
小二·3 分钟前
Python Web 开发进阶实战:量子机器学习实验平台 —— 在 Flask + Vue 中集成 Qiskit 构建混合量子-经典 AI 应用
前端·人工智能·python
AC赳赳老秦4 分钟前
Confluence + DeepSeek:构建自动化、智能化的企业知识库文档生成与维护体系
大数据·运维·人工智能·自动化·jenkins·数据库架构·deepseek
芒克芒克10 分钟前
LeetCode 134. 加油站(O(n)时间+O(1)空间最优解)
java·算法·leetcode·职场和发展
DS随心转小程序15 分钟前
ChatGPT和Gemini公式
人工智能·chatgpt·aigc·word·豆包·deepseek·ds随心转
王然-HUDDM26 分钟前
技术领跑:HUDDM-7D系统L4级功能安全预研验证
人工智能·嵌入式硬件·安全·车载系统·汽车
Light6028 分钟前
亚马逊“沃尔玛化”战略大转身:一场生鲜零售的自我革命与中国启示
人工智能·零售·数字化转型·亚马逊·新零售·沃尔玛·生鲜供应链
LiFileHub33 分钟前
ISO/IEC 23053:2022中文版
人工智能
TracyCoder12333 分钟前
LeetCode Hot100(4/100)——283. 移动零
算法·leetcode
啊阿狸不会拉杆42 分钟前
《计算机操作系统》第七章 - 文件管理
开发语言·c++·算法·计算机组成原理·os·计算机操作系统