基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
yyf198905254 分钟前
智能体的中文文献
人工智能
小北方城市网5 分钟前
第 9 课:Python 全栈项目性能优化实战|从「能用」到「好用」(企业级优化方案|零基础落地)
开发语言·数据库·人工智能·python·性能优化·数据库架构
却道天凉_好个秋7 分钟前
OpenCV(五十二):图像修复
人工智能·opencv·计算机视觉
Deepoch13 分钟前
破解酒店服务难题:Deepoc赋能机器人智能升级
人工智能·机器人·开发板·具身模型·deepoc·酒店机器人
间彧16 分钟前
Vibe Coding在实际项目中如何与现有开发流程(如敏捷开发、CI/CD)结合?
人工智能
JSU_曾是此间年少18 分钟前
pytorch自动微分机制探寻
人工智能·pytorch·python
Hcoco_me19 分钟前
大模型面试题40:结合RoPE位置编码、优秀位置编码的核心特性
人工智能·深度学习·lstm·transformer·word2vec
CoovallyAIHub21 分钟前
为你的 2026 年计算机视觉应用选择合适的边缘 AI 硬件
深度学习·算法·计算机视觉
汉克老师22 分钟前
GESP2025年12月认证C++六级真题与解析(单选题8-15)
c++·算法·二叉树·动态规划·哈夫曼编码·gesp6级·gesp六级
刘立军26 分钟前
程序员应该熟悉的概念(8)嵌入和语义检索
人工智能·算法