基于LSTM算法中文歌词生成

文章目录

一、摘要

基于LSTM的歌词生成器。首先,从预训练的GloVe词向量中加载词汇表和词向量,然后使用这些词向量构建一个嵌入矩阵。接着定义了一个LSTM模型,该模型包含一个嵌入层、一个LSTM层和一个全连接层。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行参数更新。最后,通过输入一段歌词的开头,模型可以生成指定长度的歌词。

二、实验

2.1、数据准备

此数据集近1000首歌,分成5份json文件,每个文件对应于一位歌手。json数据里面包括了Name歌名、Singer歌手和Lyric歌词。

2.2 数据预处理

定义了一个名为get_batches的函数,用于将输入数组arr划分为大小为batch_size的小批次,每个小批次包含seq_length个连续的元素。函数的输出是一个生成器,每次迭代返回一个小批次的数据。

具体来说,函数首先计算总批次大小batch_size_total,然后根据该值确定可以划分的批次数量n_batches。接着,将输入数组arr截取到合适的长度,并将其重塑为形状为(batch_size, -1)的二维数组。

接下来,函数使用一个循环遍历重塑后的数组,每次取出长度为seq_length的连续元素作为输入x,并创建一个与x形状相同的零矩阵y作为目标输出。在循环中,尝试将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr中的下一个元素赋值给y的最后一个元素。如果发生索引越界错误(即已经到达数组末尾),则将x的第二个元素到倒数第二个元素赋值给y的前seq_length-1个元素,将arr的第一个元素赋值给y的最后一个元素。

最后,函数通过yield关键字返回当前批次的输入x和目标输出y。

2.3 模型介绍

该模型包括一个嵌入层(Embedding),一个LSTM层和一个全连接层(Linear)

2.4 训练

这里定义的损失函数为交叉熵损失,优化器为Adam。通过循环遍历每个批次的数据,进行前向传播、计算损失、反向传播和参数更新。最后,输出每个epoch的损失值。

训练了80次,可以从图像看出已经趋近收敛,停止训练

2.5效果

缺点:未能进行分段。

相关推荐
Wnq100721 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴1 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案1 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵1 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower1 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122461 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
CoderYanger2 小时前
C.滑动窗口-求子数组个数-越长越合法——2799. 统计完全子数组的数目
java·c语言·开发语言·数据结构·算法·leetcode·职场和发展
厕所博士2 小时前
红黑树原理前置理解—— 2-3 树
算法·2-3树·红黑树原理理解前置
老蒋新思维2 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
大刘讲IT3 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造