【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

一、LHS种类

1、LHS

使用随机搜索生成拉丁超立方体样本。LHS函数特别适用于非常大的设计,当本机MATLAB函数内存不足时。这可能取决于MATLAB版本和所用机器的配置。当尝试运行"lhsdesign"但未成功时,此功能最有用。设计的每一行代表一个点(或样本)。设计变量被规范化,使得超立方体点的值在0和1之间。它使用最大帧间距离算法进行迭代。

2、OLHS

OLHS生成优化的拉丁超立方体样本。它使用Jin等人(2005)提出的增强随机进化算法(ESEA)或Bates等人(2004)提出的遗传算法(GA)来解决优化问题。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。

在ESEA和GA策略中,由于用于解决优化问题的启发式优化技术的随机性,所获得的实验设计可能会从一次运行更改为另一次运行。

参考文献:

Jin R, Chen W and Sudjianto A, "An efficient algorithm for constructing optimal design of computer experiments," Journal of Statistical Planning

and Inference, Vol. 134, pp 268 287, 2005.

Bates SJ, Sienz J, and Toropov VV, "Formulation of the optimal Latin

hypercube design of experiments using a permutation genetic algorithm,"

45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, 19 22 April 2004. AIAA-2004-2011.

3、TPLHS

LHS=TPLHS(nPoints,nDV,seed)

TPLHS通过使用平移传播算法(TPA)生成拉丁超立方体设计。目标是在不使用形式优化的情况下获得最优(或接近最优)拉丁超立方体设计。该过程需要最少的计算工作量,并且结果实际上是实时提供的。该算法利用点位置模式,基于PHIp准则(最大距离准则的变体)进行最优拉丁超立方体设计。由一个或多个点组成的小构建块(称为SEED)用于通过在超空间中的简单平移来重新创建这些模式。在TPA的开发过程中进行的研究发现,(i)随着维度的增加,PHIp的分布倾向于降低值;以及(ii)通过TPA获得的拉丁超立方体设计代表了高达中等尺寸的最佳拉丁超立方体的有吸引力的替代方案。得出的结论是,对于多达六个维度(无论点密度如何),所提出的拉丁超立方体设计提供了最优拉丁超立方体的计算上廉价的估计。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。

例如:

clike 复制代码
P=TPLHS(NPOINTS,NDV)
通过NDV矩阵生成NPOINTS,NPOINTS是点数,NDV是变量数。
在这种情况下使用的种子设计是放置在设计空间原点的单个点。

P=TPLHS(NPOINTS,NDV,SEED):通过NDV矩阵生成NPOINTS,NPOINTS
是点数,NDV是变量数。SEED是用于构建ELHD的基本拉丁超立方体设计。
1乘NDV SEED不需要归一化。

P=TPLHS(NPOINTS,NDV,NTRIALS):通过NDV矩阵生成NPOINTS,
NPOINTS是点数,NDV是变量数。该算法运行NTRIALS次,种子大小从1到
NTRIALS不等。P是根据PHIp准则找到的最佳设计。

PHIp标准是对样本的点在设计空间上的分布程度的度量:

s

PHIp = ( sum J d^(-p) )^(1/p)

i=1

其中p是正整数d是距离值;J是由d分隔的设计中的点对的数量;s是不同距离值的数量。任意点对之间的一般点间距离可以表示如下:

nv

d_ij=(sum|x_ik-x_jk|(t))(1/t)

k=1

其中nv是变量的数量。

clike 复制代码
PHIP=PHIPfun(X):返回X中给定设计的PHIP值;假设p=50并且t=1。
PHIP=PHIPfun(X,p):返回X中给定的设计的PHIP值,其中p为p,假设t=1。
PHIP=PHIPfun(X,p,t):返回给定值为p和t的X中给定设计的PHIP值。

参考文献:

Viana FAC, Venter G, and Balabanov V, "An algorithm for fast optimal Latinhypercube design of experiments," International Journal for NumericalMethods in Engineering, Vol. 82 (2), pp. 135-156, 2010

(DOI:10.1002/nme.2750).

二、主程序

clike 复制代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限
designspace=[VarMin;VarMax];%各个参数上下限
ndv = size(designspace, 2);%优化变量数量
npoints = 5;%抽样样本数
%% 一、在限定范围抽样
%% 1.LHS
X_LHS= createdoe(npoints,designspace,zeros(1,ndv),'lhc',0);
%% 2.TPLHS
X_TPLHS = SV(TPLHS(npoints, ndv), ...
    [zeros(1, ndv); ones(1, ndv)], ...
    designspace);%TPLHS抽样

%% 二、在0-1范围抽样

%% 1.LHS
iter=10;%迭代次數
X_LHS = LHfun(npoints, ndv,iter);%LHS抽样

%% 2.ESEAOLHS
maxiter=50;
maxstalliter=20;
X_ESEAOLHS = ESEAOLHS(npoints, ndv, maxiter, maxstalliter);%ESEAOLHS抽样

%% 3.GAOLHS
maxiter=50;
maxstalliter=20;
popsize=10*ndv;
X_GAOLHS = GAOLHS(npoints, ndv, maxiter, maxstalliter, popsize);%GAOLHS抽样

1、在限定范围抽样

(1)LHS

clike 复制代码
3.56160546861497	4.13444987304314	8.40777901990457
7.56802830455472	7.09267199095473	0.371967723696977
0.876211034143974	9.45225031978424	2.33170416235385
5.49104414252227	0.322064092441767	7.33971145788749
8.69849041404605	3.43078769064378	5.37088724880758

(2)TPLHS

clike 复制代码
5	0	0
0	7.50	2.50
7.50	10	5
2.50	2.50	7.50
10	5	10

2、在0-1范围抽样

(1)LHS

clike 复制代码
0	0	0.750000000000000
1	0.250000000000000	0.250000000000000
0.750000000000000	0.750000000000000	0.500000000000000
0.250000000000000	1	1
0.500000000000000	0.500000000000000	0

(2)GAOLHS

clike 复制代码
0.750000000000000	0.750000000000000	1
1	0.250000000000000	0.500000000000000
0	0.500000000000000	0.750000000000000
0.500000000000000	1	0.250000000000000
0.250000000000000	0	0

(3)ESEAOLHS

clike 复制代码
0.500000000000000	0.750000000000000	0
1	0.500000000000000	0.750000000000000
0	0.250000000000000	0.500000000000000
0.250000000000000	1	1
0.750000000000000	0	0.250000000000000

三、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"100期"以及相应指令,即可获取对应下载方式。

相关推荐
科研工作站2 小时前
【创新算法】改进深度优先搜索算法配合二进制粒子群的配电网故障恢复重构研究
matlab·配电网·故障恢复·改进粒子群·深度优先搜索·33节点
zzc9213 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
软件算法开发3 小时前
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
matlab·wsn·距离变化·能量开销·动态调整·低功耗拓扑控制开销算法
机器学习之心9 小时前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
曹勖之2 天前
UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误
matlab·ue5·机器人
曹勖之2 天前
simulink有无现成模块可以实现将三个分开的输入合并为一个[1*3]的行向量输出?
matlab
机器学习之心2 天前
Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)
深度学习·matlab·transformer·bigru
slandarer3 天前
MATLAB | 绘图复刻(十九)| 轻松拿捏 Nature Communications 绘图
开发语言·matlab
【杨(_> <_)】3 天前
信号处理分析工具——时频分析(一)
算法·matlab·信号处理
曹勖之3 天前
在MATLAB中使用自定义的ROS2消息
开发语言·matlab·机器人·ros·simulink·ros2