背包问题算法

背包问题算法

0-1背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多为1

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量
n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [[0] * (c + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]

for rows in dp:
    print(rows)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [0] * (c + 1)
for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

完全背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多不限

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)
w.insert(0, 0)
v.insert(0, 0)

dp = [[0] * (c + 1) for _ in range(n + 1)]

for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]
for values in dp:
    print(values)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)

w.insert(0, 0)
v.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(0, c + 1): # 正向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

多重背包问题

问题:背包的容量为10,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多分别为[2, 1, 2, 1]

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]
counts = [2, 1, 2, 1]  # 数量
c = 10  # 最大容量
n = len(w)

w.insert(0, 0)
v.insert(0, 0)
counts.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        for k in range(1, counts[i] + 1):
            if j >= k * w[i]:
                dp[j] = max(dp[j], dp[j - k * w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])
相关推荐
PAK向日葵3 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者6 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
wyiyiyi6 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
地平线开发者6 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
mit6.8246 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
没有bug.的程序员6 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋7 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
星星火柴9367 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
AntBlack8 小时前
不当韭菜V1.1 :增强能力 ,辅助构建自己的交易规则
后端·python·pyqt
艾莉丝努力练剑8 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法