背包问题算法

背包问题算法

0-1背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多为1

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量
n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [[0] * (c + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]

for rows in dp:
    print(rows)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [0] * (c + 1)
for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

完全背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多不限

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)
w.insert(0, 0)
v.insert(0, 0)

dp = [[0] * (c + 1) for _ in range(n + 1)]

for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]
for values in dp:
    print(values)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)

w.insert(0, 0)
v.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(0, c + 1): # 正向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

多重背包问题

问题:背包的容量为10,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多分别为[2, 1, 2, 1]

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]
counts = [2, 1, 2, 1]  # 数量
c = 10  # 最大容量
n = len(w)

w.insert(0, 0)
v.insert(0, 0)
counts.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        for k in range(1, counts[i] + 1):
            if j >= k * w[i]:
                dp[j] = max(dp[j], dp[j - k * w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])
相关推荐
gihigo199812 小时前
matlab 基于瑞利衰落信道的误码率分析
算法
foxsen_xia13 小时前
go(基础06)——结构体取代类
开发语言·算法·golang
foxsen_xia13 小时前
go(基础08)——多态
算法·golang
leoufung13 小时前
用三色 DFS 拿下 Course Schedule(LeetCode 207)
算法·leetcode·深度优先
ID_1800790547313 小时前
基于 Python 的 Cdiscount 商品详情 API 调用与 JSON 核心字段解析(含多规格 SKU 提取)
开发语言·python·json
Q_Q51100828514 小时前
python+django/flask+vue的大健康养老公寓管理系统
spring boot·python·django·flask·node.js
我是哈哈hh14 小时前
【Python数据分析】Numpy总结
开发语言·python·数据挖掘·数据分析·numpy·python数据分析
Michelle802314 小时前
24大数据 14-2 函数练习
开发语言·python
qq_3814549914 小时前
Python学习技巧
开发语言·python·学习
im_AMBER14 小时前
算法笔记 18 二分查找
数据结构·笔记·学习·算法