背包问题算法

背包问题算法

0-1背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多为1

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量
n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [[0] * (c + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]

for rows in dp:
    print(rows)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [0] * (c + 1)
for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

完全背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多不限

二维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)
w.insert(0, 0)
v.insert(0, 0)

dp = [[0] * (c + 1) for _ in range(n + 1)]

for i in range(1, n + 1):
    for j in range(1, c + 1): # 正向
        if j >= w[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])
        else:
            dp[i][j] = dp[i - 1][j]
for values in dp:
    print(values)
print('最大value:', dp[n][c])

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量

n = len(w)

w.insert(0, 0)
v.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(0, c + 1): # 正向
        if j >= w[i]:
            dp[j] = max(dp[j], dp[j - w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])

多重背包问题

问题:背包的容量为10,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多分别为[2, 1, 2, 1]

一维数组

python 复制代码
w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]
counts = [2, 1, 2, 1]  # 数量
c = 10  # 最大容量
n = len(w)

w.insert(0, 0)
v.insert(0, 0)
counts.insert(0, 0)

dp = [0] * (c + 1)

for i in range(1, n + 1):
    for j in range(c, 0, -1): # 逆向
        for k in range(1, counts[i] + 1):
            if j >= k * w[i]:
                dp[j] = max(dp[j], dp[j - k * w[i]] + v[i])
    print(dp)
print('最大value:', dp[c])
相关推荐
Kaltistss23 分钟前
98.验证二叉搜索树
算法·leetcode·职场和发展
im_AMBER23 分钟前
学习日志05 python
python·学习
知己如祭27 分钟前
图论基础(DFS、BFS、拓扑排序)
算法
大虫小呓28 分钟前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
mit6.82436 分钟前
[Cyclone] 哈希算法 | SIMD优化哈希计算 | 大数运算 (Int类)
算法·哈希算法
c++bug39 分钟前
动态规划VS记忆化搜索(2)
算法·动态规划
哪 吒41 分钟前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
军训猫猫头1 小时前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
success2 小时前
【爆刷力扣-数组】二分查找 及 衍生题型
算法
摸爬滚打李上进2 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习