论文阅读笔记 | Limited-Reference Image Quality Assessment: Paradigms and Discussions

文章目录

文章链接:https://dl.acm.org/doi/10.1145/3581783.3613436

文章题目

Limited-Reference Image Quality Assessment: Paradigms and Discussions

发表年限

2023

期刊/会议名称

MM'23: Proceedings of the 31st ACM International Conference on Multimedia

动机

  • 图像质量评估 IQA 指标是比较和改进图像增强算法的关键。但都存在一个共同的问题,也就是参考信息有限。
  • 作者称这种类型的 IQA 任务为 l i m i t e d limited limited- r e f e r e n c e reference reference I Q A IQA IQA。
  • 在图像 S R SR SR 和重定向任务中,参考图像的大小与 S R SR SR 图像和重定向图像的大小不一致。对于 U I E UIE UIE 和 L L I E LLIE LLIE 任务,它们的参考图像质量明显较低。这些任务的 IQA 都属于具有有限参考信息的场景。然而,在这些增强过程中,参考信息仍然是保证结构一致性不可或缺的。
  • 如何利用有限的参考信息来评估退化图像的质量?
  • 特定任务的 IQA 模型通常只关注特定 IQA 任务引入的失真。模型泛化能力较差,在实践中缺乏灵活性。

主要思想或方法架构

  • 对于传统的图像处理任务,如图像采集、压缩、传输等,都存在未受损的参考图像。
  • 因此,可以通过与其参考图像的像素级相似性指数来评估扭曲图像的质量。
  • 其中 X X X 代表一个完美的参考图像(标记为 Q ( X ) = 1 Q(X)= 1 Q(X)=1), Y Y Y 代表一个扭曲退化的图像。 M g M_g Mg 为一般 FR-IQA 模型。 Q g Q_g Qg 为相应的质量分数。
  • 然而,对于参考信息有限的场景,上述两个约束无法满足。因此, M g M_g Mg 不能在这种情况下工作。
  • 鉴于此,研究人员针对不同的图像增强任务开发了一系列特定任务的 IQA 模型( T a s k Task Task-- S p e c i f i c Specific Specific I Q A IQA IQA M o d e l s Models Models )。
  • 其中 Y Y Y 表示扭曲的图像,可以是 S R SR SR 图像、重定位图像、增强的水下图像、增强的低光图像。 M S R M_{SR} MSR 表示特定于 S R SR SR 的 IQA 模型, Q S R Q_{SR} QSR 是相应的质量分数。
  • 特定任务的 IQA 模型泛化能力较差,在实践中缺乏灵活性。因此,作者致力于为参考信息有限的场景开发统一的 IQA 模型。可以表示如下:
  • 为了构建统一的 IQA 模型,作者将这个具有挑战性的问题分为两个子问题:

    1. 第一,是否使用参考图像?
    2. 第二,如何使用参考图像?
  • 具体来说,对于图 S R SR SR 和重定向任务,即使它们的信息有限,它们的参考图像也不会受损。因此,从参考图像中提取的信息/特征通常有利于质量评估。

  • 然而,对于 U I E UIE UIE 和 L L I E LLIE LLIE 任务,它们的参考图像都有不同程度的受损。在这种情况下,从严重受损的参考图像中提取的信息/特征可能会误导质量评估。

  • 对于第一个子问题,公式可以修改为:

  • 其中 T ( ⋅ ) T(·) T(⋅) 表示特征映射函数,目的是将参考图像 X X X 映射到一个值。
  • θ T θ_T θT表示阈值。
  • 如果 T ( X ) T(X) T(X) ≥ ≥ ≥ θ T θ_T θT , M u M_u Mu 将使用参考图像。否则, M u M_u Mu 将不使用参考图像。
  • 对于第二个子问题,公式可以修改为:
  • F ( X ) F(X) F(X) 和 F ( Y ) F(Y) F(Y) 分别表示 X X X 和 Y Y Y 的特征表示。理想的统一模型由特征映射函数 T ( ⋅ ) T(·) T(⋅)、特征提取模块 F ( ⋅ ) F(·) F(⋅) 和感知距离计算模块 M u ( ⋅ ) M_u(·) Mu(⋅) 组成。

实验结果

  • 与 D I S Q DISQ DISQ 模型相比,作者的 S R SR SR- I Q A IQA IQA 指标具有较低的预测偏差。
  • 度量标准和平均意见分数 M O S MOS MOS 之间的细微差距表明作者提出的度量标准在 S R − I Q A SR-IQA SR−IQA 中取得了卓越的表现。
相关推荐
刘婉晴6 小时前
【信息安全工程师备考笔记】第三章 密码学基本理论
笔记·安全·密码学
晓数8 小时前
【硬核干货】JetBrains AI Assistant 干货笔记
人工智能·笔记·jetbrains·ai assistant
我的golang之路果然有问题9 小时前
速成GO访问sql,个人笔记
经验分享·笔记·后端·sql·golang·go·database
lwewan9 小时前
26考研——存储系统(3)
c语言·笔记·考研
搞机小能手9 小时前
六个能够白嫖学习资料的网站
笔记·学习·分类
nongcunqq10 小时前
爬虫练习 js 逆向
笔记·爬虫
汐汐咯10 小时前
终端运行java出现???
笔记
无敌小茶12 小时前
Linux学习笔记之环境变量
linux·笔记
帅云毅12 小时前
Web3.0的认知补充(去中心化)
笔记·学习·web3·去中心化·区块链
豆豆12 小时前
day32 学习笔记
图像处理·笔记·opencv·学习·计算机视觉