吴恩达机器学习笔记 十八 制定一个性能评估标准 学习曲线 高偏差 高方差

一个模型的好坏的评估基准可以从下面几个方面考虑:

1.考虑人类在这个问题上的表现

2.对比竞争算法的表现

3.根据经验猜测

判断是高偏差还是高方差

训练样本数量越多,越难完美地拟合每个样本 ,因此 J_train 会逐渐增大一点点,但泛化能力也逐渐增强;

高偏差的情况:

模型太简单了,再怎么加数据误差也差不多,假设以人类水平为基准,则J_train和基准之间差距较大,图像一直水平向右延伸,增加样本数量并不会有什么改变

高方差的情况:

J_train可能会比人类的表现好一些,但 J_cv 仍远大于 J_train。这种情况下可以增加样本数量或许能使模型表现得更好。

相关推荐
程序员陆通31 分钟前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot33 分钟前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio40 分钟前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
DDDDDouble43 分钟前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer44 分钟前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军1 小时前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`1 小时前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
机器之心2 小时前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.3 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag