吴恩达机器学习笔记 十八 制定一个性能评估标准 学习曲线 高偏差 高方差

一个模型的好坏的评估基准可以从下面几个方面考虑:

1.考虑人类在这个问题上的表现

2.对比竞争算法的表现

3.根据经验猜测

判断是高偏差还是高方差

训练样本数量越多,越难完美地拟合每个样本 ,因此 J_train 会逐渐增大一点点,但泛化能力也逐渐增强;

高偏差的情况:

模型太简单了,再怎么加数据误差也差不多,假设以人类水平为基准,则J_train和基准之间差距较大,图像一直水平向右延伸,增加样本数量并不会有什么改变

高方差的情况:

J_train可能会比人类的表现好一些,但 J_cv 仍远大于 J_train。这种情况下可以增加样本数量或许能使模型表现得更好。

相关推荐
黎燃2 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊4 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠4 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶7 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云8 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术8 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新8 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心8 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算8 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位8 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程