机器学习库Scikit-Learn

Scikit-Learn是Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归聚类、预测和模型分析等。

Scikit-Learn 依赖于NumPy、SciPy和 Matplotlib,因此,只需要提前安装好这几个库然后安装 Scikit-Lean,安装代码:

python 复制代码
pip install scikit-learn

创建一个线性回归示例:

python 复制代码
from sklearn.linear_model import LinearRegression #导入线性回归模型
model=LinearRegression()#建立线性回归模型
print(model)

model.fit():训练模型,对于监督模型来说是 fit(X,y),对于非监督模型是 fit(X)。

监督模型提供的接口有:

model.predict(X_new):预测新样本

model.predict_proba(X_new):预测概率,仅对某些模型有用(比如LR)

model.score():得分越高,fit越好

非监督模型提供的接口有:

model.transform():从数据中学到新的"基空间"

model.fit_transform():从数据中学到新的基并将这个

据按照这组"基"进行转换

这个库有内置数据集,比如常见的鸢尾花数据,有一百五十个鸢尾花的一些尺寸的观测值:尊片长

度、宽度,花瓣长度和宽度。还有它们的亚属:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉

尼亚鸢尾(Iris virginica)。

下面导入鸢尾花的数据,建立线性SVM模型,对其分类,预测,并查看模型参数代码如下:

python 复制代码
from sklearn import datasets#导入数据集
Iris=datasets.load_iris()#加载鸢尾花数据集
print(Iris.data.shape)#查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm.LinearSVC()#建立线性SVM分类器
clf.fit(Iris.data,Iris.target)#用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]])#训练好模型之后,输入新的数据进行预测
#查看训练好模型的参数
clf.coef_

运行结果如下:

更多资料参考:scikit-learn: machine learning in Python --- scikit-learn 1.4.1 documentation

相关推荐
weixin_307779135 分钟前
基于AWS服务的客户服务电话情感分析解决方案
人工智能·深度学习·机器学习·云计算·aws
极客BIM工作室17 分钟前
U-Net 的输入与输出:通用场景与扩散模型场景解析
人工智能·深度学习·计算机视觉
说私域26 分钟前
定制开发开源AI智能名片S2B2C商城小程序中的羊群效应应用研究
人工智能·小程序
databook1 小时前
AI辅助编程下的软件分层设计:让生成的代码井然有序
人工智能·程序员·架构
向阳逐梦1 小时前
一篇图文详解PID调参细节,实现PID入门到精通
人工智能·机器人
来让爷抱一个1 小时前
2025年企业智慧大脑升级指南:PandaWiki如何用AI重构知识生产力
人工智能·重构
第七序章1 小时前
【C + +】C++11 (下) | 类新功能 + STL 变化 + 包装器全解析
c语言·数据结构·c++·人工智能·哈希算法·1024程序员节
FriendshipT1 小时前
图像生成:PyTorch从零开始实现一个简单的扩散模型
人工智能·pytorch·python
格林威2 小时前
AOI在化学药剂检测领域中的应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造·机器视觉
mit6.8242 小时前
[DeepOCR] 生成控制 | NoRepeatNGramLogitsProcessor | 配置`SamplingParams`
人工智能·深度学习·机器学习