机器学习库Scikit-Learn

Scikit-Learn是Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归聚类、预测和模型分析等。

Scikit-Learn 依赖于NumPy、SciPy和 Matplotlib,因此,只需要提前安装好这几个库然后安装 Scikit-Lean,安装代码:

python 复制代码
pip install scikit-learn

创建一个线性回归示例:

python 复制代码
from sklearn.linear_model import LinearRegression #导入线性回归模型
model=LinearRegression()#建立线性回归模型
print(model)

model.fit():训练模型,对于监督模型来说是 fit(X,y),对于非监督模型是 fit(X)。

监督模型提供的接口有:

model.predict(X_new):预测新样本

model.predict_proba(X_new):预测概率,仅对某些模型有用(比如LR)

model.score():得分越高,fit越好

非监督模型提供的接口有:

model.transform():从数据中学到新的"基空间"

model.fit_transform():从数据中学到新的基并将这个

据按照这组"基"进行转换

这个库有内置数据集,比如常见的鸢尾花数据,有一百五十个鸢尾花的一些尺寸的观测值:尊片长

度、宽度,花瓣长度和宽度。还有它们的亚属:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉

尼亚鸢尾(Iris virginica)。

下面导入鸢尾花的数据,建立线性SVM模型,对其分类,预测,并查看模型参数代码如下:

python 复制代码
from sklearn import datasets#导入数据集
Iris=datasets.load_iris()#加载鸢尾花数据集
print(Iris.data.shape)#查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm.LinearSVC()#建立线性SVM分类器
clf.fit(Iris.data,Iris.target)#用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]])#训练好模型之后,输入新的数据进行预测
#查看训练好模型的参数
clf.coef_

运行结果如下:

更多资料参考:scikit-learn: machine learning in Python --- scikit-learn 1.4.1 documentation

相关推荐
开发者每周简报16 分钟前
求职市场变化
人工智能·面试·职场和发展
AI前沿技术追踪30 分钟前
OpenAI 12天发布会:AI革命的里程碑@附35页PDF文件下载
人工智能
余~~1853816280036 分钟前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
galileo20161 小时前
LLM与金融
人工智能
DREAM依旧1 小时前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
ROBOT玲玉1 小时前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
GocNeverGiveUp2 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
浊酒南街2 小时前
决策树(理论知识1)
算法·决策树·机器学习
B站计算机毕业设计超人3 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条3 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学