机器学习库Scikit-Learn

Scikit-Learn是Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归聚类、预测和模型分析等。

Scikit-Learn 依赖于NumPy、SciPy和 Matplotlib,因此,只需要提前安装好这几个库然后安装 Scikit-Lean,安装代码:

python 复制代码
pip install scikit-learn

创建一个线性回归示例:

python 复制代码
from sklearn.linear_model import LinearRegression #导入线性回归模型
model=LinearRegression()#建立线性回归模型
print(model)

model.fit():训练模型,对于监督模型来说是 fit(X,y),对于非监督模型是 fit(X)。

监督模型提供的接口有:

model.predict(X_new):预测新样本

model.predict_proba(X_new):预测概率,仅对某些模型有用(比如LR)

model.score():得分越高,fit越好

非监督模型提供的接口有:

model.transform():从数据中学到新的"基空间"

model.fit_transform():从数据中学到新的基并将这个

据按照这组"基"进行转换

这个库有内置数据集,比如常见的鸢尾花数据,有一百五十个鸢尾花的一些尺寸的观测值:尊片长

度、宽度,花瓣长度和宽度。还有它们的亚属:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉

尼亚鸢尾(Iris virginica)。

下面导入鸢尾花的数据,建立线性SVM模型,对其分类,预测,并查看模型参数代码如下:

python 复制代码
from sklearn import datasets#导入数据集
Iris=datasets.load_iris()#加载鸢尾花数据集
print(Iris.data.shape)#查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm.LinearSVC()#建立线性SVM分类器
clf.fit(Iris.data,Iris.target)#用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]])#训练好模型之后,输入新的数据进行预测
#查看训练好模型的参数
clf.coef_

运行结果如下:

更多资料参考:scikit-learn: machine learning in Python --- scikit-learn 1.4.1 documentation

相关推荐
Narutolxy2 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街2 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552874 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao4 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin5 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威5 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
IT古董5 小时前
【漫话机器学习系列】249.Word2Vec自然语言训练模型
机器学习·自然语言处理·word2vec
灬0灬灬0灬5 小时前
深度学习---常用优化器
人工智能·深度学习
_Itachi__6 小时前
Model.eval() 与 torch.no_grad() PyTorch 中的区别与应用
人工智能·pytorch·python
白光白光6 小时前
大语言模型训练的两个阶段
人工智能·机器学习·语言模型