机器学习库Scikit-Learn

Scikit-Learn是Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归聚类、预测和模型分析等。

Scikit-Learn 依赖于NumPy、SciPy和 Matplotlib,因此,只需要提前安装好这几个库然后安装 Scikit-Lean,安装代码:

python 复制代码
pip install scikit-learn

创建一个线性回归示例:

python 复制代码
from sklearn.linear_model import LinearRegression #导入线性回归模型
model=LinearRegression()#建立线性回归模型
print(model)

model.fit():训练模型,对于监督模型来说是 fit(X,y),对于非监督模型是 fit(X)。

监督模型提供的接口有:

model.predict(X_new):预测新样本

model.predict_proba(X_new):预测概率,仅对某些模型有用(比如LR)

model.score():得分越高,fit越好

非监督模型提供的接口有:

model.transform():从数据中学到新的"基空间"

model.fit_transform():从数据中学到新的基并将这个

据按照这组"基"进行转换

这个库有内置数据集,比如常见的鸢尾花数据,有一百五十个鸢尾花的一些尺寸的观测值:尊片长

度、宽度,花瓣长度和宽度。还有它们的亚属:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉

尼亚鸢尾(Iris virginica)。

下面导入鸢尾花的数据,建立线性SVM模型,对其分类,预测,并查看模型参数代码如下:

python 复制代码
from sklearn import datasets#导入数据集
Iris=datasets.load_iris()#加载鸢尾花数据集
print(Iris.data.shape)#查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm.LinearSVC()#建立线性SVM分类器
clf.fit(Iris.data,Iris.target)#用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]])#训练好模型之后,输入新的数据进行预测
#查看训练好模型的参数
clf.coef_

运行结果如下:

更多资料参考:scikit-learn: machine learning in Python --- scikit-learn 1.4.1 documentation

相关推荐
高洁011 小时前
CLIP 的双编码器架构是如何优化图文关联的?(2)
python·深度学习·机器学习·知识图谱
线束线缆组件品替网1 小时前
Bulgin 防水圆形线缆在严苛环境中的工程实践
人工智能·数码相机·自动化·软件工程·智能电视
Cherry的跨界思维1 小时前
【AI测试全栈:Vue核心】22、从零到一:Vue3+ECharts构建企业级AI测试可视化仪表盘项目实战
vue.js·人工智能·echarts·vue3·ai全栈·测试全栈·ai测试全栈
冬奇Lab1 小时前
【Cursor进阶实战·07】OpenSpec实战:告别“凭感觉“,用规格驱动AI编程
人工智能·ai编程
玖疯子1 小时前
2025年总结框架
人工智能
dazzle1 小时前
计算机视觉处理(OpenCV基础教学(十九):图像轮廓特征查找技术详解)
人工智能·opencv·计算机视觉
拌面jiang1 小时前
过拟合--Overfitting(#拌面)
人工智能·深度学习·机器学习
MM_MS1 小时前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
桂花饼2 小时前
基于第三方中转的高效 Sora-2 接口集成方案
人工智能·aigc·ai视频生成·gemini 3 pro·gpt-5.2·ai绘画4k·sora_video2
golang学习记2 小时前
Zed 编辑器的 6 个隐藏技巧:提升开发效率的「冷知识」整理
人工智能