深度学习应该如何入门?

深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。

1. 基础知识

深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。

2. 学习机器学习

吴恩达的机器学习课程是一个很好的入门教程。虽然有些地方可能有点过时,但它仍然是最好的选择之一。这门课程适合任何水平的学生,但最好还是要了解一些基本的矩阵运算和编程知识。你可以在Coursera上找到这门课程¹。

3. 深入学习

一旦你掌握了机器学习的基础知识,就可以进一步学习深度学习。Ian Goodfellow的《深度学习》是一本经典的书籍,涵盖了深度学习的重要主题。你可以在网上找到这本书的中文翻译版本⁶。

4. 实践

最后,通过实践来巩固所学知识。fast.ai提供了一个很好的资源,基于PyTorch构建的库,可以帮助你快速实现深度学习模型⁷。另外,斯坦福大学的CS231n和CS224n课程也是深度学习领域的经典课程,你可以选择其中一个专注于你感兴趣的领域。

相关推荐
能来帮帮蒟蒻吗10 分钟前
深度学习(3)—— 评估指标
人工智能·深度学习
一只小风华~22 分钟前
HarmonyOS:ArkTS 页导航
深度学习·华为·harmonyos·鸿蒙
xier_ran32 分钟前
机器学习:支持向量机(SVM)详解
人工智能·机器学习·支持向量机
哥布林学者36 分钟前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(六)课后习题和代码实践
深度学习·ai
惊讶的猫38 分钟前
面向无监督行人重识别的摄像头偏差消除学习
人工智能·算法·机器学习
深度学习机器1 小时前
RAG Chunking 2.0:提升文档分块效果的一些经验
人工智能·算法·llm
间彧1 小时前
LangChain入门指南
人工智能
AI_56781 小时前
CI/CD自动化部署革命:“三分钟流水线“背后的工程实践
java·开发语言·人工智能·ai·neo4j
李昊哲小课1 小时前
cuda12 cudnn9 tensorflow 显卡加速
人工智能·python·深度学习·机器学习·tensorflow
数智前线1 小时前
卡在触觉的AI,一目科技让机器人从“看世界”到“摸世界”
人工智能