深度学习应该如何入门?

深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。

1. 基础知识

深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。

2. 学习机器学习

吴恩达的机器学习课程是一个很好的入门教程。虽然有些地方可能有点过时,但它仍然是最好的选择之一。这门课程适合任何水平的学生,但最好还是要了解一些基本的矩阵运算和编程知识。你可以在Coursera上找到这门课程¹。

3. 深入学习

一旦你掌握了机器学习的基础知识,就可以进一步学习深度学习。Ian Goodfellow的《深度学习》是一本经典的书籍,涵盖了深度学习的重要主题。你可以在网上找到这本书的中文翻译版本⁶。

4. 实践

最后,通过实践来巩固所学知识。fast.ai提供了一个很好的资源,基于PyTorch构建的库,可以帮助你快速实现深度学习模型⁷。另外,斯坦福大学的CS231n和CS224n课程也是深度学习领域的经典课程,你可以选择其中一个专注于你感兴趣的领域。

相关推荐
vocal9 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua10 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter17 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD18 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus30 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能34 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客40 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理