深度学习应该如何入门?

深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。

1. 基础知识

深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。

2. 学习机器学习

吴恩达的机器学习课程是一个很好的入门教程。虽然有些地方可能有点过时,但它仍然是最好的选择之一。这门课程适合任何水平的学生,但最好还是要了解一些基本的矩阵运算和编程知识。你可以在Coursera上找到这门课程¹。

3. 深入学习

一旦你掌握了机器学习的基础知识,就可以进一步学习深度学习。Ian Goodfellow的《深度学习》是一本经典的书籍,涵盖了深度学习的重要主题。你可以在网上找到这本书的中文翻译版本⁶。

4. 实践

最后,通过实践来巩固所学知识。fast.ai提供了一个很好的资源,基于PyTorch构建的库,可以帮助你快速实现深度学习模型⁷。另外,斯坦福大学的CS231n和CS224n课程也是深度学习领域的经典课程,你可以选择其中一个专注于你感兴趣的领域。

相关推荐
二二孚日5 分钟前
自用华为ICT云赛道AI第三章知识点-昇腾芯片硬件架构,昇腾芯片软件架构
人工智能·华为
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(几何变换--图像平移、图像旋转、放射变换、图像缩放、透视变换)
开发语言·人工智能·python·opencv·计算机视觉
蹦蹦跳跳真可爱5891 小时前
Python----循环神经网络(Transformer ----Layer-Normalization(层归一化))
人工智能·python·rnn·transformer
夜阳朔1 小时前
Conda环境激活失效问题
人工智能·后端·python
小Lu的开源日常1 小时前
AI模型太多太乱?用 OpenRouter,一个接口全搞定!
人工智能·llm·api
mit6.8242 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
Baihai IDP2 小时前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·ai·系统架构·llm·agent·rag·白海科技
沫儿笙2 小时前
弧焊机器人气体全方位节能指南
网络·人工智能·机器人
LONGZETECH2 小时前
【龙泽科技】新能源汽车维护与动力蓄电池检测仿真教学软件【吉利几何G6】
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
看到我,请让我去学习3 小时前
OpenCV 与深度学习:从图像分类到目标检测技术
深度学习·opencv·分类