目标跟踪SORT算法原理浅析

SORT算法

Simple Online and Realtime Tracking(SORT)是一个非常简单、有效、实用的多目标跟踪算法。在SORT中,仅仅通过IOU来进行匹配虽然速度非常快,但是ID switch依然非常严重。

SORT最大特点是基于Faster RCNN的目标检测方法,并利用卡尔曼滤波算法与匈牙利算法,极大提高了多目标跟踪的速度。
SORT算法核心就是卡尔曼滤波匈牙利算法

卡尔曼滤波

卡尔曼滤波被广泛应用于无人机、自动驾驶、卫星导航等领域,简单来说,其作用就是基于传感器的测量值来更新预测值,以达到更精确的估计。

假设我们要跟踪位置变化,如下图所示,蓝色的分布是卡尔曼滤波预测值,红色的分布是传感器的测量值,黄色的分布就是预测值基于测量值更新后的最优估计。

匈牙利算法

匈牙利算法解决的是一个分配问题,在多目标跟踪主要步骤中的计算相似度的,得到了前后两帧的相似度矩阵。匈牙利算法就是通过求解这个相似度矩阵,从而解决前后两帧真正匹配的目标。

SORT核心算法流程

Detections是通过目标检测器得到的目标框,Tracks是轨迹信息。核心是匹配的过程与卡尔曼滤波的预测和更新过程。

SORT算法的工作流程如下:

  1. 目标检测器得到目标框Detections,同时卡尔曼滤波器预测当前的帧的Tracks, 然后将Detections和Tracks进行IOU匹配,最终得到的结果分为:
  • Unmatched Tracks,这部分被认为是失配,Detection和Track无法匹配,如果失配持续了T次,该目标ID将从待跟踪目标中删除。
  • Unmatched Detections, 这部分说明没有任意一个Track能匹配Detection, 所以要为这个detection分配一个新的track。
  • Matched Track,这部分说明得到了匹配。
  1. 卡尔曼滤波可以根据Tracks状态预测下一帧的目标框状态。
  2. 卡尔曼滤波更新是对观测值(匹配上的Track)和估计值更新所有track的状态。

总结

作者使用了Faster RCNN来进行模型的检测,并使用Kalman滤波预测状态,基于检测框位置和IOU的匈牙利算法,使得算法有很高的效率,但是这么频繁的ID切换,在实际应用中跟踪的价值会大打折扣!

相关推荐
mtouch3338 分钟前
GIS+VR地理信息虚拟现实XR MR AR
大数据·人工智能·ar·无人机·xr·vr·mr
小马学嵌入式~17 分钟前
堆排序原理与实现详解
开发语言·数据结构·学习·算法
青岛少儿编程-王老师19 分钟前
CCF编程能力等级认证GESP—C++6级—20250927
java·c++·算法
一人の梅雨21 分钟前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
dundunmm1 小时前
【数据集】WebQuestions
人工智能·llm·数据集·知识库问答·知识库
却道天凉_好个秋1 小时前
OpenCV(五):鼠标控制
人工智能·opencv·鼠标控制
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 64: 岛屿的最大面积、被围绕的区域
java·算法·leetcode·决策树·职场和发展·深度优先·推荐算法
IT_陈寒1 小时前
Redis性能优化:5个被低估的配置项让你的QPS提升50%
前端·人工智能·后端
Christo31 小时前
关于K-means和FCM的凸性问题讨论
人工智能·算法·机器学习·数据挖掘·kmeans
飞翔的佩奇2 小时前
【完整源码+数据集+部署教程】 水果叶片分割系统: yolov8-seg-dyhead
人工智能·yolo·计算机视觉·数据集·yolov8·yolo11·水果叶片分割系统