目标跟踪SORT算法原理浅析

SORT算法

Simple Online and Realtime Tracking(SORT)是一个非常简单、有效、实用的多目标跟踪算法。在SORT中,仅仅通过IOU来进行匹配虽然速度非常快,但是ID switch依然非常严重。

SORT最大特点是基于Faster RCNN的目标检测方法,并利用卡尔曼滤波算法与匈牙利算法,极大提高了多目标跟踪的速度。
SORT算法核心就是卡尔曼滤波匈牙利算法

卡尔曼滤波

卡尔曼滤波被广泛应用于无人机、自动驾驶、卫星导航等领域,简单来说,其作用就是基于传感器的测量值来更新预测值,以达到更精确的估计。

假设我们要跟踪位置变化,如下图所示,蓝色的分布是卡尔曼滤波预测值,红色的分布是传感器的测量值,黄色的分布就是预测值基于测量值更新后的最优估计。

匈牙利算法

匈牙利算法解决的是一个分配问题,在多目标跟踪主要步骤中的计算相似度的,得到了前后两帧的相似度矩阵。匈牙利算法就是通过求解这个相似度矩阵,从而解决前后两帧真正匹配的目标。

SORT核心算法流程

Detections是通过目标检测器得到的目标框,Tracks是轨迹信息。核心是匹配的过程与卡尔曼滤波的预测和更新过程。

SORT算法的工作流程如下:

  1. 目标检测器得到目标框Detections,同时卡尔曼滤波器预测当前的帧的Tracks, 然后将Detections和Tracks进行IOU匹配,最终得到的结果分为:
  • Unmatched Tracks,这部分被认为是失配,Detection和Track无法匹配,如果失配持续了T次,该目标ID将从待跟踪目标中删除。
  • Unmatched Detections, 这部分说明没有任意一个Track能匹配Detection, 所以要为这个detection分配一个新的track。
  • Matched Track,这部分说明得到了匹配。
  1. 卡尔曼滤波可以根据Tracks状态预测下一帧的目标框状态。
  2. 卡尔曼滤波更新是对观测值(匹配上的Track)和估计值更新所有track的状态。

总结

作者使用了Faster RCNN来进行模型的检测,并使用Kalman滤波预测状态,基于检测框位置和IOU的匈牙利算法,使得算法有很高的效率,但是这么频繁的ID切换,在实际应用中跟踪的价值会大打折扣!

相关推荐
杰克尼1 天前
二分查找为什么总是写错
java·数据结构·算法
Liudef061 天前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
格林威1 天前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制1 天前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回1 天前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh1 天前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
程序员阿鹏1 天前
56.合并区间
java·数据结构·算法·leetcode
rengang661 天前
Spring AI Alibaba 框架使用示例总体介绍
java·人工智能·spring·spring ai·ai应用编程
FreeBuf_1 天前
新型Agent感知伪装技术利用OpenAI ChatGPT Atlas浏览器传播虚假内容
人工智能·chatgpt
yuluo_YX1 天前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer