从0开始配置windows下yolov7训练环境

计划在windows本地电脑搭建一个基于yolov7的目标识别环境,可以进行实验和测试,并进行模型训练和调试。包括conda,yolov7和labelImg环境的从0开始搭建和配置。

1 虚拟python环境conda

本地电脑安装python后,在多个项目切换,总是免不了不同的python版本和依赖库管理,一旦发生冲突后,各个项目都会出现依赖库错误和混乱,所以用python虚拟环境管理是必不可少的。我比较喜欢界面化的管理工具,Anaconda就是很好的选择。

Anaconda 是一个用于科学计算和数据科学的开源软件包管理和环境管理系统。它包含了许多流行的数据科学工具和库,如 Python、R 语言等,并提供了一个方便的方法来安装、管理和更新这些工具和库,支持包括windows在内的多个平台安装使用。

Anaconda下载地址 根据自己的平台下载安装程序后,按照安装向导完成安装。完成安装后需要注意配置环境变量,比如安装到:C:/Anaconda下面,那么需要添加如下几个路径到path环境变量中:

  • C:\Anaconda
  • C:\Anaconda\Scripts
  • C:\Anaconda\Library\mingw-w64\bin
  • C:\Anaconda\Library\usr\bin
  • C:\Anaconda\Library\bin

都完成后,会在系统应用列表中增加一个Anoconda3程序项,找到Anaconda Navigator可以启动程序。

启动后可以在Enviroments下建立各个项目自己的虚拟环境,可以指定每个虚拟环境的python版本,并在界面上激活虚拟环境。

打开终端可以进行命令行操作。

2 yolov7环境配置

先下载yolov7仓库:

bash 复制代码
git clone https://github.com/WongKinYiu/yolov7

下载成功后,通过anaconda启动终端,进入下载的yolov7目录,安装环境依赖

安装完成后,进行测试验证:

bash 复制代码
//建立一个weights目录存放模型
mkdir weights
//运行测试命令(缺少的模型会自动下载)
python detect.py --weights weights/yolov7.pt --source inference/images 

直到看到如下的结果就表示测试验证完成,环境正确。

此时可以到yolov7\runs\detect\exp\目录下去看到图片的识别结果,结果标注在图片中。

到此位置,表示yolov7的本地python环境可以正常工作,下面要进一步训练自己的模型,则需要标注数据集,然后进行模型训练。标注工具,我们采用labelImg。

3 labelImg

首先下载labelImg仓库,

bash 复制代码
git clone https://github.com/tzutalin/labelImg.git

然后为labelImg在Anaconda中建立一个独立的虚拟环境label_img,并启动虚拟环境的运行终端terminal,在虚拟环境中安装qt5:

继续安装xml和anaconda依赖:

生成resources.py:

bash 复制代码
pyrcc5 -o libs/resources.py resources.qrc

最后,可以启动labelImg:

复制代码
python labelImg.py

labelImg启动后如下:

现在就可以开始对自己的图像数据集进行导入和标记,将是一个大工程。标记完成后,再导入到yolo环境中进行训练。

相关推荐
小天才才2 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
新加坡内哥谈技术32 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
中杯可乐多加冰2 小时前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek