【机器学习】Adam优化算法

原理

Adam(Adaptive Moment Estimation)是一种常用的优化算法,结合了AdaGrad和RMSProp算法的优点。它通过自适应地调整学习率来优化神经网络模型的参数。

Adam算法的工作原理如下:

1. 初始化参数:

  • 初始化模型的参数,包括权重和偏置。
  • 初始化两个一阶矩估计变量m和二阶矩估计变量v,它们的维度与模型的参数相同,初始值为0。

2. 计算梯度:

  • 使用随机梯度下降(SGD)或其他优化算法计算当前批次样本的梯度。

3. 更新一阶矩估计变量m和二阶矩估计变量v:

  • 计算当前梯度的一阶矩估计(平均梯度)m:m = β₁m + (1-β₁)g
  • 计算当前梯度的二阶矩估计(平方梯度的指数加权移动平均)v:v = β₂v + (1-β₂)g²
    (其中,g表示当前梯度,β₁和β₂是可调节的指数衰减率,一般取值分别为0.9和0.999)

4. 校正一阶矩估计变量m和二阶矩估计变量v的偏差:

  • 对一阶矩估计变量m进行校正:m̂ = m / (1 - β₁^t)
  • 对二阶矩估计变量v进行校正:v̂ = v / (1 - β₂^t)
    (其中,t表示当前迭代次数)

5. 更新模型参数:

  • 根据校正后的一阶矩估计变量m̂和二阶矩估计变量v̂以及学习率α,更新模型参数:
    θ = θ - α * m̂ / (√(v̂) + ε)
    (其中,θ表示模型的参数,ε是一个很小的数,如10^-8,用于避免除零错误)

通过以上步骤,Adam算法可以自适应地调整学习率,并且在训练过程中根据梯度的大小和稳定性对学习率进行调节,从而提高了模型的收敛速度和稳定性。它被广泛应用于深度学习模型的训练中,并且通常能够取得较好的优化效果。

总结

Adam将随机梯度下降法两种扩展的优势结合在一起:

  • 自适应梯度算法(AdaGrad)维护一个参数的学习速率,可以提高在稀疏梯度问题上的性能(例如,自然语言和计算机视觉问题)。
  • 均方根传播(RMSProp)也维护每个参数的学习速率,根据最近的权重梯度的平均值(例如变化的速度)来调整。这意味着该算法在线上和非平稳问题上表现良好(如:噪声)。

Adam优化算法的优点包括:

  1. 自适应学习率:Adam算法可以自适应地调整每个参数的学习率,根据其梯度的一阶矩估计和二阶矩估计进行调节,有助于加速模型收敛。

  2. 高效的参数更新:通过对梯度的一阶矩估计和二阶矩估计进行指数加权移动平均,Adam算法在更新参数时考虑了梯度的历史信息,有助于平稳地更新参数。

  3. 鲁棒性:Adam对超参数的选择相对较为鲁棒,通常不需要过多的调参即可在不同问题上表现良好。

然而,Adam算法也存在一些缺点,包括:

  1. 对超参数敏感:虽然Adam算法相对于其他优化算法来说对超参数的选择更加鲁棒,但仍然需要调整一些超参数,如β₁、β₂和学习率等,以获得最佳的性能。

  2. 内存消耗较大:由于Adam算法需要维护每个参数的一阶矩估计和二阶矩估计,因此在内存消耗方面略高,特别是在参数较多的大型模型中。

  3. 可能存在过拟合风险:在某些情况下,Adam算法可能会使模型在训练集上过拟合,特别是在小样本数据集上的应用时需要小心。

综合来看,Adam算法在深度学习中被广泛使用,并且通常能够取得较好的优化效果。

可以参考本视频

相关推荐
珠海西格电力15 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃15 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方16 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE316 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
启途AI16 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_116 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客16 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨16 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦16 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志16 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc