思路:
- 获取彩色图和深度图
- 将深度图对齐到彩色图上
- 测量范围内像素的距离
- 可视化结果
代码
CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(realsense)
set(CMAKE_BUILD_TYPE "Release")
# 添加c++ 11标准支持
set(CMAKE_CXX_FLAGS "-std=c++11 -O2")
# Eigen
include_directories("/usr/include/eigen3")
# 寻找OpenCV库
find_package(OpenCV REQUIRED)
find_package(realsense2 REQUIRED)
find_package(Threads REQUIRED)
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -Wall -std=c++0x"
)
# 添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(realsense src/main.cpp)
target_link_libraries(realsense ${OpenCV_LIBS} ${realsense2_LIBRARY})
main.cpp
#include <iostream>
#include <sstream>
#include <iostream>
#include <fstream>
#include <algorithm>
#include<string>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<librealsense2/rs.hpp>
#include<librealsense2/rsutil.h>
using namespace std;
using namespace cv;
//获取深度像素对应长度单位(米)的换算比例
float get_depth_scale(rs2::device dev)
{
// Go over the device's sensors
for (rs2::sensor& sensor : dev.query_sensors()) //遍历每一个传感器
{
// Check if the sensor if a depth sensor
if (rs2::depth_sensor dpt = sensor.as<rs2::depth_sensor>()) //找到深度传感器
{
return dpt.get_depth_scale(); //获取深度像素对应长度单位(米)的换算比例
}
}
throw std::runtime_error("Device does not have a depth sensor");
}
//深度图对齐到彩色图函数
Mat align_Depth2Color(Mat depth,Mat color,rs2::pipeline_profile profile){
//声明数据流
auto depth_stream = profile.get_stream(RS2_STREAM_DEPTH).as<rs2::video_stream_profile>();
auto color_stream = profile.get_stream(RS2_STREAM_COLOR).as<rs2::video_stream_profile>();
//获取内参
const auto intrinDepth = depth_stream.get_intrinsics();
const auto intrinColor = color_stream.get_intrinsics();
//直接获取从深度摄像头坐标系到彩色摄像头坐标系的欧式变换矩阵
//auto extrinDepth2Color=depth_stream.get_extrinsics_to(color_stream);
rs2_extrinsics extrinDepth2Color;
rs2_error *error;
rs2_get_extrinsics(depth_stream, color_stream, &extrinDepth2Color, &error);
//平面点定义
float pd_uv[2],pc_uv[2];
//空间点定义
float Pdc3[3],Pcc3[3];
//获取深度像素与现实单位比例(D435默认1毫米)
float depth_scale = get_depth_scale(profile.get_device());
int y = 0,x = 0;
//初始化结果
//Mat result=Mat(color.rows,color.cols,CV_8UC3,Scalar(0,0,0));
Mat result = Mat(color.rows, color.cols, CV_16U, Scalar(0));
//对深度图像遍历
for(int row = 0; row<depth.rows; row++){
for(int col = 0; col<depth.cols; col++){
//将当前的(x,y)放入数组pd_uv,表示当前深度图的点
pd_uv[0] = col;
pd_uv[1] = row;
//取当前点对应的深度值
uint16_t depth_value = depth.at<uint16_t>(row,col);
//换算到米
float depth_m = depth_value*depth_scale;
//将深度图的像素点根据内参转换到深度摄像头坐标系下的三维点
rs2_deproject_pixel_to_point(Pdc3, &intrinDepth, pd_uv, depth_m);
//将深度摄像头坐标系的三维点转化到彩色摄像头坐标系下
rs2_transform_point_to_point(Pcc3, &extrinDepth2Color, Pdc3);
//将彩色摄像头坐标系下的深度三维点映射到二维平面上
rs2_project_point_to_pixel(pc_uv, &intrinColor, Pcc3);
//取得映射后的(u,v)
x = (int)pc_uv[0];
y = (int)pc_uv[1];
// if(x<0||x>color.cols)
// continue;
// if(y<0||y>color.rows)
// continue;
//最值限定
x = x < 0 ? 0:x;
x = x > depth.cols-1 ? depth.cols-1 : x;
y = y < 0 ? 0 : y;
y = y > depth.rows-1 ? depth.rows-1 : y;
result.at<uint16_t>(y,x) = depth_value;
}
}
//返回一个与彩色图对齐了的深度信息图像
return result;
}
void measure_distance(Mat &color, Mat depth, cv::Size range, rs2::pipeline_profile profile)
{
//获取深度像素与现实单位比例(D435默认1毫米)
float depth_scale = get_depth_scale(profile.get_device());
//定义图像中心点
cv::Point center(color.cols/2, color.rows/2);
//定义计算距离的范围
cv::Rect RectRange(center.x-range.width/2, center.y-range.height/2, range.width, range.height);
//遍历该范围
float distance_sum = 0;
int effective_pixel = 0;
for(int y = RectRange.y; y < RectRange.y + RectRange.height; y++){
for(int x = RectRange.x; x < RectRange.x + RectRange.width; x++){
//如果深度图下该点像素不为0,表示有距离信息
if(depth.at<uint16_t>(y,x)){
distance_sum += depth_scale*depth.at<uint16_t>(y,x);
effective_pixel++;
}
}
}
cout << "遍历完成,有效像素点:" << effective_pixel << endl;
float effective_distance = distance_sum / effective_pixel;
cout << "目标距离:" << effective_distance << " m" << endl;
char distance_str[30];
sprintf(distance_str, "the distance is:%f m", effective_distance);
cv::rectangle(color, RectRange, Scalar(0,0,255), 2, 8);
cv::putText(color, (string)distance_str, cv::Point(color.cols*0.02,color.rows*0.05), cv::FONT_HERSHEY_PLAIN, 2, Scalar(0,255,0), 2, 8);
}
int main()
{
const char* depth_win = "depth_Image";
namedWindow(depth_win, WINDOW_AUTOSIZE);
const char* color_win = "color_Image";
namedWindow(color_win, WINDOW_AUTOSIZE);
//深度图像颜色map
rs2::colorizer c; // Helper to colorize depth images
//创建数据管道
rs2::pipeline pipe;
rs2::config pipe_config;
pipe_config.enable_stream(RS2_STREAM_DEPTH,640,480,RS2_FORMAT_Z16,30);
pipe_config.enable_stream(RS2_STREAM_COLOR,640,480,RS2_FORMAT_BGR8,30);
//start()函数返回数据管道的profile
rs2::pipeline_profile profile = pipe.start(pipe_config);
//定义一个变量去转换深度到距离
float depth_clipping_distance = 1.f;
//声明数据流
auto depth_stream = profile.get_stream(RS2_STREAM_DEPTH).as<rs2::video_stream_profile>();
auto color_stream = profile.get_stream(RS2_STREAM_COLOR).as<rs2::video_stream_profile>();
//获取内参
auto intrinDepth = depth_stream.get_intrinsics();
auto intrinColor = color_stream.get_intrinsics();
//直接获取从深度摄像头坐标系到彩色摄像头坐标系的欧式变换矩阵
auto extrinDepth2Color=depth_stream.get_extrinsics_to(color_stream);
while (cvGetWindowHandle(depth_win) && cvGetWindowHandle(color_win)) // Application still alive?
{
//堵塞程序直到新的一帧捕获
rs2::frameset frameset = pipe.wait_for_frames();
//取深度图和彩色图
rs2::frame color_frame = frameset.get_color_frame();//processed.first(align_to);
rs2::frame depth_frame = frameset.get_depth_frame();
rs2::frame depth_frame_4_show = frameset.get_depth_frame().apply_filter(c);
//获取宽高
const int depth_w = depth_frame.as<rs2::video_frame>().get_width();
const int depth_h = depth_frame.as<rs2::video_frame>().get_height();
const int color_w = color_frame.as<rs2::video_frame>().get_width();
const int color_h = color_frame.as<rs2::video_frame>().get_height();
//创建OPENCV类型 并传入数据
Mat depth_image(Size(depth_w, depth_h), CV_16U, (void*)depth_frame.get_data(), Mat::AUTO_STEP);
Mat depth_image_4_show(Size(depth_w, depth_h), CV_8UC3, (void*)depth_frame_4_show.get_data(), Mat::AUTO_STEP);
Mat color_image(Size(color_w, color_h), CV_8UC3, (void*)color_frame.get_data(), Mat::AUTO_STEP);
//实现深度图对齐到彩色图
Mat result = align_Depth2Color(depth_image, color_image, profile);
measure_distance(color_image, result, cv::Size(20,20), profile);
//显示
imshow(depth_win, depth_image_4_show);
imshow(color_win, color_image);
// imshow("result",result);
waitKey(1);
}
return 0;
}
最终效果