在不到4 年的时间里,Transformer 模型以其强大的性能和创新的思想,迅速在NLP 社区崭露头角,打破了过去30 年的记录。BERT、T5 和GPT 等模型现在已成为计算机视觉、语音识别、翻译、蛋白质测序、编码等各个领域中新应用的基础构件。因此,斯坦福大学最近提出了"基础模型"这个术语,用于定义基于巨型预训练Transformer 的一系列大型语言模型。所有这些进步都归功于一些简单的想法。
《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》可作为所有对Transformer 工作原理感兴趣的人的参考书。作者在理论和实践两方面都做出了出色的工作,详细解释了如何逐步使用Transformer。阅读完本书后,你将能使用这一**进的技术集合来增强你的深度学习应用能力。本书在详细介绍BERT、RoBERTa、T5 和GPT-3 等流行模型前,先讲述了Transformer 的架构以便为你的学习奠定坚实基础。本书还讲述了如何将Transformer 应用于许多用例,如文本摘要、图像标注、问答、情感分析和假新闻分析等。
整本书将使用 Python、PyTorch和TensorFlow进行实战。你将首先学习AI语言理解神经网络模型的要素,然后学习如何探索和实现 Transformer。 本书旨在为读者提供在这个颠覆性的 AI时代中,有效开发语言理解关键方面所需的 Python 深度学习知识和工具,呈现成为工业 4.0AI专家所需要的新技能。