ES分页查询的最佳实践:三种方案

Elasticsearch(ES)中进行分页查询时,最佳实践取决于具体的使用场景和需求。

以下是对每种分页方法的简要分析以及它们适用的情况:

1. From + Size

  • 最常见且直观的方法,通过from参数指定跳过多少条记录,size参数指定每次返回多少条记录。
  • 优点:实现简单,适用于小规模或浅层分页,即前几页查询。
  • 缺点 :随着from值增大,查询效率会显著降低,尤其是在深度分页的情况下(例如,查询很多页之后的数据),因为ES需要遍历所有之前的结果才能找到指定偏移的结果集,这对分布式系统来说成本非常高。

2. Scroll API

  • 提供了一种持续检索大量数据的方式,创建一个"滚动"上下文,可以在一段时间内保持一致性视图。
  • 优点:非常适合大数据量的批量读取或深度分页,尤其是在不需要考虑数据实时更新的情况下,如数据导出或批处理任务。
  • 缺点:滚动上下文会占用服务器资源,且对实时性要求高的场景不合适,因为它反映的是某个时间点的快照状态,不能反映出滚动上下文创建后数据的变化。
  • 从ES 5.0版本开始提供,用于克服from+size在深度分页时的性能瓶颈。
  • 优点 :利用 _score 或用户定义的排序字段来进行连续查询,避免了大规模跳跃式分页的问题。相比from+size,它在深度分页时性能更优,同时能够更好地处理实时变化的数据。
  • 缺点 :需要有稳定的排序字段,并且不是所有场景下都能方便地转换为search_after模式。

代码示例

java 复制代码
package org.example;

import org.apache.http.HttpHost;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchScrollRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.MatchAllQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;

import java.io.IOException;
import java.util.concurrent.TimeUnit;

public class ESScrollMain {
    private static final String indexName = "kibana_sample_data_logs";

    public static void main(String[] args) throws IOException {
        System.out.println("Hello and welcome!");
        RestClientBuilder builder = RestClient.builder(new HttpHost("10.x.x.x", 9200, "http"));
        RestHighLevelClient client = new RestHighLevelClient(builder);

        SearchRequest searchRequest = new SearchRequest(indexName);
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        // hit 返回值(bool 查询返回条数)
//        searchSourceBuilder.size(0);
//        searchSourceBuilder.from(0);
        searchSourceBuilder.trackTotalHits(true);
        // 超时时间60s
        MatchAllQueryBuilder search = QueryBuilders.matchAllQuery();
        searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
        searchSourceBuilder.size(2000);
        searchSourceBuilder.query(search);

        long scrollTime = 30L;
        searchRequest.source(searchSourceBuilder);
        searchRequest.scroll(TimeValue.timeValueSeconds(scrollTime));

        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        String scrollId = searchResponse.getScrollId();
        SearchHit[] hits = searchResponse.getHits().getHits();

        int count = 0;
        int batch = 1;
        System.out.println("初始结果条数:" + count);
        count += hits.length;
        System.out.println("滚动第" + batch + "批结果总条数:" + count);
        while (hits != null && hits.length > 0) {
            batch++;
            SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
            scrollRequest.scroll(TimeValue.timeValueSeconds(scrollTime));
            searchResponse = client.scroll(scrollRequest, RequestOptions.DEFAULT);
            scrollId = searchResponse.getScrollId();
            hits = searchResponse.getHits().getHits();
            count += hits.length;
            System.out.println("滚动第" + batch + "批结果总条数:" + count);

        }

        System.out.println("结束,总计:"+searchResponse.getHits().getTotalHits());

    }
}

综合考虑

  • 对于网页应用中的普通分页浏览,尤其是前几页,from+size足够。
  • 如果需要处理大数据集且允许一定的延迟,或者一次性获取所有结果,Scroll API 是更好的选择。
  • 对于深度分页且需要实时性较好的场景,应优先考虑search_after

优化方向

此外,针对大型分页查询的性能优化还可以包括:

  • 使用高效的过滤条件减少不必要的查询范围。
  • 考虑是否真的需要返回全部数据,或者能否通过汇总统计或其他方式减少数据传输量。
  • 设置合理的索引策略和分片大小,优化集群配置,如增加合适的内存缓冲区等。
相关推荐
2301_7965125230 分钟前
Rust编程学习 - 为什么说Cow 代表的是Copy-On-Write, 即“写时复制技术”,它是一种高效的 资源管理手段
java·学习·rust
编啊编程啊程33 分钟前
【029】智能停车计费系统
java·数据库·spring boot·spring·spring cloud·kafka
hashiqimiya36 分钟前
springboot后端的接口headers
java·spring boot·后端
懒羊羊不懒@41 分钟前
JavaSe—集合框架、Collection集合
java·开发语言
霸道流氓气质1 小时前
Java中Stream使用示例-对实体List分组且保留原数据顺序并对分组后的每组内的数据进行部分业务逻辑修改操作
java·list
java1234_小锋1 小时前
Spring事件监听的核心机制是什么?
java·spring·面试
zskj_zhyl2 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
星释2 小时前
Rust 练习册 16:Trait 作为返回类型
java·网络·rust
2301_796512522 小时前
Rust编程学习 - 如何理解Rust 语言提供了所有权、默认move 语义、借用、生命周期、内部可变性
java·学习·rust