【剪枝实战】使用VGGNet训练、稀疏训练、剪枝、微调等,剪枝出只有3M的模型

摘要

本次剪枝实战是基于下面这篇论文去复现的,主要是实现对BN层的γ/gamma进行剪枝操作,本文用到的代码和数据集都可以在我的资源中免费下载到。

相关论文:Learning Efficient Convolutional Networks through Network Slimming (ICCV 2017)

剪枝的原理

在一个卷积-BN-激活模块中,BN层可以实现通道的缩放。如下:

BN层的具体操作有两部分:

在归一化后会进行线性变换,那么当系数gamma很小时候,对应的激活(Zout)会相应很小。这些响应很小的输出可以裁剪掉,这样就实现了bn层的通道剪枝。

剪枝的过程

第一步、使用VGGNet训练模型。保存训练结果,方便将来的比对!

第二步、在BN层网络中加入稀疏因子,训练模型。

第三步、剪枝操作。

第四步、fine-tune模型,提高模型的ACC。

接下来,我们一起实现对VGGNet的剪枝。

一、项目结构

Slimming_Demo

├─checkpoints

│ ├─vgg

│ ├─vgg_pruned

│ └─vgg_sp

├─data

│ ├─train

│ │ ├─Black-grass

│ │ ├─Charlock

│ │ ├─Cleavers

│ │ ├─Common Chickweed

│ │ ├─Common wheat

│ │ ├─Fat Hen

│ │ ├─Loose Silky-bent

│ │ ├─Maize

│ │ ├─Scentless Mayweed

│ │ ├─Shepherds Purse

│ │ ├─Small-flowered Cranesbill

│ │ └─Sugar beet

│ └─val

│ ├─Black-grass

│ ├─Charlock

│ ├─Cleavers

│ ├─Common Chickweed

│ ├─Common wheat

│ ├─Fat Hen

│ ├─Loose Silky-bent

│ ├─Maize

│ ├─Scentless Mayweed

│ └─Shepherds Purse

├─vgg.py

├─train.py

├─train_sp.py

├─prune.py

└─train_prune.py

train.py:训练脚本,训练VGGNet原始模型 vgg.py:模型脚本 train_sp.py:稀疏训练脚本。 prune.py:模型剪枝脚本。 train_prune.py:微调模型脚本。

二、正常训练

首先,我们进行正常训练出一个模型,用来和剪枝后的模型进行对比。原始模型有67.8M,体积非常大。

运行train.py,正常训练结果保存为checkpoints/vgg/best.pth

通过Tensorboard工具,我们观察到,此时的BN层的gamma系数并不稀疏,很难判断出各个通道的重要性,不利于剪枝!

三、稀疏训练

运行train_sp.py,稀疏化训练结果保存为checkpoints/vgg_sp/best.pth

使用tensorboard查看runs/路径下保存的log,查看稀疏化训练结果。

可以看到通过稀疏化训练,==此时的gamma系数已经呈现趋近0的分布,==我们可以对gamma接近0的channel进行剪枝!

核心代码

四、剪枝

有了稀疏化训练的模型,我们便可以通过读取checkpoints/vgg_sp/best.pth,根据gamma系数来判断网络中各个通道的重要性,剪去不重要的通道。

运行prune.py,剪枝的结果保存为checkpoints/vgg_pruned/best.pth

查看剪枝后的VGG模型,只有3.58M,体积非常小,剪枝瘦身效果非常明显!

五、微调

对模型剪枝后,为了恢复模型的性能,我们还需要对剪枝的模型进行Finetune

运行train_prune.py

checkpoints/vgg_pruned/best.pth进行微调,结果生成在checkpoints/vgg_pruned_finetune/best.pth

六、总结

我们通过复现Learning Efficient Convolutional Networks through Network Slimming (ICCV 2017)论文里提到的网络大瘦身剪枝算法,完成对VGG模型进行剪枝。

相关推荐
m0_6770343512 分钟前
机器学习-异常检测
人工智能·深度学习·机器学习
张子夜 iiii30 分钟前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
胡耀超1 小时前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型
索迪迈科技1 小时前
GPS汽车限速器有哪些功能?主要运用在哪里?
人工智能·行车记录仪·车辆安全·监控管理·gps定位
Niuguangshuo1 小时前
深度学习基本模块:Conv2D 二维卷积层
人工智能·深度学习
b***25111 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
金井PRATHAMA2 小时前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱
练习两年半的工程师2 小时前
AWS TechFest 2025: 智能体企业级开发流程、Strands Agents
人工智能·云计算·aws
Hello123网站2 小时前
Whismer-你的定制化AI问答助手
人工智能·chatgpt·ai工具
yinmaisoft2 小时前
当低代码遇上AI,有趣,实在有趣
android·人工智能·低代码·开发工具·rxjava