stm32-编码器测速

一、编码器简介

编码电机

旋转编码器

A,B相分别接通道一和二的引脚,VCC,GND接单片机VCC,GND

二、正交编码器工作原理

以前的代码是通过触发外部中断,然后在中断函数里手动进行计次。使用编码器接口的好处就是节约软件资源。对于频繁执行,操作简单的任务,一般设计一个硬件电路模块来自动完成。

使用定时器的编码器接口,再配合编码器,就可以测量旋转速度和旋转方向。编码器测速一般应用在电机控制的项目上。使用PWM驱动电机,再使用编码器测量电机的速度,然后再使用PID算法进行闭环控制。

平横车经常用到

1.计数方式

2.框图分析

由图可知,只有CH1和CH2有编码器接口,且编码器只用到了输入捕获结构体的输入滤波和边沿检测器,则其余的结构体成员都不用区配置。

由框图可知,配置Encoder需要配置GPIO,输入捕获结构体的部分元素,时基单元,我们一般给ARR为65535-1,即最大计数量程,防止计数溢出。PSC=1-1,不分频,直接72M进行计数

3.计数方向与编码器信号的关系

TIM_EncoderInterfaceConfig(TIM3,TIM_EncoderMode_TI12,TIM_ICPolarity_Rising,TIM_ICPolarity_Rising)

这里TIM_EncoderMode_TI12即对应上面的计数边沿,仅在TI1和TI2计数就相当于只在A或B相的边沿计数,我们一般都使用AB相都计数

极性修改:可以使用上方的函数进行,也可以硬件直接调换AB相引脚

三、固件库使用

1.开启GPIO和TIM的时钟

2.配置GPIO结构体,模式配置为上拉输入

3.不用配置内部时钟源,因为编码器托管了时钟,编码器接口就是带方向控制的外部时钟, 所以内部时钟就没有用了

4.配置时基单元,计数模式就不用配置了,取决于编码器的AB相边沿,ARR为65535-1, PSC = 1-1不分频

5.配置输入捕获单元(因为是由)TI1FP1和2接入到编码器接口的,所以捕获单元结构体 元素只需配置输入滤波和边沿检测即可,这里边沿检测给上升沿还是下降沿并不是说是

哪个有效,因为编码器模式下上/下沿都有效,这里指电平极性是否翻转,高电平不反转,

低电平翻转

6.TIM_EncoderInterfaceConfig();配置编码器,TIM_Cmd();使能定时器

7.使用中断读取Encoder的值(测速度)

若要测位置就直接读取Encoder的值即可,不需要中断
上拉输入还是下拉输入的选择

一般可以看一下接在这个引脚的外部模块输出的默认电平,如果外部模块空闲默认输出高电平,我们就选择上拉输入,默认输入高电平,如果外部模块默认输出低电平,我们配置下拉输入,默认输入低电平。总结,将需要配置电平的位置和外部模块保持默认状态一致,防止默认电平打架。

如果不确定外部模块输出的默认状态或者外部信号输出功率非常小,这时尽量选择浮空输入,浮空输入没有上下拉电阻去影响外部信号,缺点是当引脚悬空时,没有默认电平,输入就会受噪声干扰,来回不断跳变。

**测位置:**A、B相各出现了一个下降沿和上升沿,所以计次总共加了4次。

如果转到0,再往左转,0自减,计数器反向溢出,回到自动重装值,65535,然后继续往下减

解决方法是:如果我们想让0自减为-1,直接把uint16_t类型强制转换成int16_t即可

如果想让编码器测速度,可以在固定的闸门时间读一次CNT,然后把CNT清零,此时CNT的值代表速度,单位是脉冲个数/S

(测频法)

cs 复制代码
#include "encoder.h"


void Encoder_Init(void)
{
	//开启GPIO和TIM3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	//初始化GPIO
	GPIO_InitTypeDef GPIO_InitStruct;//定义GPIO结构体
	//GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;//输入不需要配置速度
	GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_IPU;
	GPIO_InitStruct.GPIO_Pin   = GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_Init(GPIOA,&GPIO_InitStruct);
	
	//因为编码器接口会托管时钟,编码器接口就是带方向控制的外部时钟,所以内部时钟就没有用了	
	//TIM_InternalClockConfig(TIM2);
	
	//配置时基单元
	//初始化时基单元
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;
	TIM_TimeBaseInitStruct.TIM_Prescaler = 1-1;//PSC-预分频器,给0,不分频
	//TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;//计数方向被编码器托管了
	TIM_TimeBaseInitStruct.TIM_Period = 65535-1;//ARR寄存器-重装载寄存器
	TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;/*不分频----滤波器的采样频率,                                    
                                                                  可以由内部时钟直接提供,														                 
                                                        也可以由内部时钟加一个时钟分频而来,
												分频系数就是由TIM_ClockDivision决定*/
	TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;//重复计数器,只有高级定时器才有	
	TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStruct);

	//配置输入捕获单元
	TIM_ICInitTypeDef TIM_ICInitStruct;
	TIM_ICStructInit(&TIM_ICInitStruct);
	TIM_ICInitStruct.TIM_Channel = TIM_Channel_1;
	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;//电平极性选择,高电平极性不反        
                                                                 转,低电平极性反转
	//TIM_ICInitStruct.TIM_ICSelection //直连or交叉连
	//TIM_ICInitStruct.TIM_ICPrescaler //分频器因子,即每N个边沿跳变事件捕获一次-CCMR1_ICPS
	TIM_ICInitStruct.TIM_ICFilter = 0xF;//CCMR1_ICF
	TIM_ICInit(TIM3, &TIM_ICInitStruct);
	
	TIM_ICInitStruct.TIM_Channel = TIM_Channel_2;
	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;//电平极性选择,高电平极性不反    
                                                             转,低电平极性反转
	TIM_ICInitStruct.TIM_ICFilter = 0xF;//CCMR1_ICF
	TIM_ICInit(TIM3,&TIM_ICInitStruct);
	
	TIM_EncoderInterfaceConfig(TIM3,TIM_EncoderMode_TI12,TIM_ICPolarity_Rising,TIM_ICPolarity_Rising);//这里的上升沿和上面结构体配置的效果一样,所以前面的可以删去

	//使能TIM
	TIM_Cmd(TIM3,ENABLE);
}

int16_t Encoder_Get(void)//int16_t 为了显示负数
{
	int16_t temp;
	temp = TIM_GetCounter(TIM3);
	TIM_SetCounter(TIM3,0);//这里每次获得了编码器的值后就清零CNT是为了得到速度
                           //我们使用了中断,一秒进入一次然后读取CNT的值作为旋转速度
	return temp;
}
cs 复制代码
#include "bsp_tim.h"

void Time_Config()
{
	//开启时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	
	//选择时基单元的时钟-为内部时钟--定时器上电后默认是内部时钟,故不写这一个也行
	TIM_InternalClockConfig(TIM2);
	
	//初始化时基单元
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;
	TIM_TimeBaseInitStruct.TIM_Prescaler = 7200-1;//PSC-预分频器
	TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;//向上计数 
	TIM_TimeBaseInitStruct.TIM_Period = 10000-1;//ARR寄存器-重装载寄存器
	TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;/*不分频----滤波器的采样频率,可以由内部时钟直接提供,
																													也可以由内部时钟加一个时钟分频而来,
																													分频系数就是由TIM_ClockDivision决定*/
	TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;//重复计数器,只有高级定时器才有
	
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStruct);
	
	//使能中断-事件更新
	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
	
	TIM_ClearFlag(TIM2,TIM_IT_Update);//因为TIM_TimeBaseInit函数最后有一个直接操作UG位的操作
	                                  //使得直接产生了一个更新事件,因此直接进行给UIE位置1
									 //直接进入了中断,使得我们初始化ARR和PSC还未写入到
									//影子寄存器,使得Num一上电就是1
									//所以在进入中断之前先清楚中断标志位
	
	//使能中断之后就要进入NVIC了
	//先优先级分组
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
	//配置结构体
	NVIC_InitTypeDef NVIC_InitStruct;
	NVIC_InitStruct.NVIC_IRQChannel = TIM2_IRQn;//中断通道
	NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;
	NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStruct);
	
	//启动定时器
	TIM_Cmd(TIM2,ENABLE);
	//在_it文件里编写中断服务函数
}
cs 复制代码
#include ".\tim\bsp_tim.h"
#include "encoder.h"
#include ".\OLED\OLED.h"



int16_t speed;
int main()
{
	Time_Config();
	Encoder_Init();
	OLED_Init();
	while(1)
	{
		OLED_ShowSignedNum(1,5,speed,5);
	}
}
void TIM2_IRQHandler()
{
	//先获取中断标志位
	if(TIM_GetITStatus(TIM2,TIM_IT_Update) == SET)
	{
		speed = Encoder_Get();
		//清楚中断标志位
		TIM_ClearFlag(TIM2,TIM_FLAG_Update);
	}
}
相关推荐
日晨难再1 小时前
嵌入式:STM32的启动(Startup)文件解析
stm32·单片机·嵌入式硬件
yufengxinpian2 小时前
集成了高性能ARM Cortex-M0+处理器的一款SimpleLink 2.4 GHz无线模块-RF-BM-2340B1
单片机·嵌入式硬件·音视频·智能硬件
__基本操作__3 小时前
历遍单片机下的IIC设备[ESP--0]
单片机·嵌入式硬件
网易独家音乐人Mike Zhou9 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
zy张起灵9 小时前
48v72v-100v转12v 10A大功率转换电源方案CSM3100SK
经验分享·嵌入式硬件·硬件工程
PegasusYu12 小时前
STM32CUBEIDE FreeRTOS操作教程(九):eventgroup事件标志组
stm32·教程·rtos·stm32cubeide·free-rtos·eventgroup·时间标志组
lantiandianzi16 小时前
基于单片机的多功能跑步机控制系统
单片机·嵌入式硬件
文弱书生65616 小时前
输出比较简介
stm32
哔哥哔特商务网16 小时前
高集成的MCU方案已成电机应用趋势?
单片机·嵌入式硬件
跟着杰哥学嵌入式16 小时前
单片机进阶硬件部分_day2_项目实践
单片机·嵌入式硬件