飞桨自然语言处理套件PaddleNLP初探

PaddleNLP是一款简单易用且功能强大的自然语言处理和大语言模型(LLM)开发库。聚合业界优质预训练模型并提供开箱即用的开发体验,覆盖NLP多场景的模型库搭配产业实践范例可满足开发者灵活定制的需求。

官网:GitHub - PaddlePaddle/PaddleNLP: 👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc.

pip安装

复制代码
pip install --upgrade paddlenlp

快速开始

大模型文本生成

PaddleNLP提供了方便易用的Auto API,能够快速的加载模型和Tokenizer。这里以使用 linly-ai/chinese-llama-2-7b 大模型做文本生成为例:

复制代码
>>> from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("linly-ai/chinese-llama-2-7b")
>>> model = AutoModelForCausalLM.from_pretrained("linly-ai/chinese-llama-2-7b", dtype="float16")
>>> input_features = tokenizer("你好!请自我介绍一下。", return_tensors="pd")
>>> outputs = model.generate(**input_features, max_length=128)
>>> tokenizer.batch_decode(outputs[0])
# ['\n你好!我是一个AI语言模型,可以回答你的问题和提供帮助。']

一键UIE预测

PaddleNLP提供一键预测功能,无需训练,直接输入数据即可开放域抽取结果。这里以信息抽取-命名实体识别任务,UIE模型为例:

复制代码
>>> from pprint import pprint
>>> from paddlenlp import Taskflow

>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
>>> ie = Taskflow('information_extraction', schema=schema)
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!"))

大模型

文档:https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm

相关推荐
阿湯哥18 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群19 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_8002561119 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
商业讯网119 小时前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链
薛定谔的猫198220 小时前
llama-index Embedding 落地到 RAG 系统
开发语言·人工智能·python·llama-index
gorgeous(๑>؂<๑)20 小时前
【西北工业大学-邢颖慧组-AAAI26】YOLO-IOD:实时增量目标检测
人工智能·yolo·目标检测·计算机视觉·目标跟踪
飞哥数智坊20 小时前
TRAE 国际版限免开启!一份给新手的入门说明书
人工智能·ai编程·trae
翱翔的苍鹰20 小时前
神经网络中损失函数(Loss Function)介绍
人工智能·深度学习·神经网络
狼爷20 小时前
【译】Skills 详解:Skills 与 prompts、Projects、MCP 和 subagents 的比较
人工智能·aigc