CGAN——生成0-9数字图像(Tensorflow+mnist)

1、简介

  • 传统的GAN或者其他的GAN都是通过一堆的训练数据,最后训练出了生成网络,随机输入噪声最后产生的数据是这些训练数据类别中之一,无法提前预测生成的是哪个类别。
  • 如果需要定向指定生成某些数据,比如想生成飞机,数字9等指定类别的图片,就需要利用CGAN------条件生成对抗网络
  • 本文利用CGAN,输入带有标签的数字图像,训练后,再生成对应标签的图像。
  • 数据集:mnist
  • 框架:tensorflow

2、代码

python 复制代码
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, LeakyReLU, BatchNormalization, Reshape
from keras.layers import Input, Embedding, Flatten, multiply, Dropout
from keras.datasets import mnist
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import matplotlib


# 条件对抗生成网络
class CGAN():
    def __init__(self):
        # 写入输入维度
        self.img_rows = 28  # 行
        self.img_cols = 28  # 列
        self.img_channel = 1  # 通道数
        self.img_shape = (self.img_rows, self.img_cols, self.img_channel)  # 尺寸

        self.num_classes = 10  # 类别数
        self.latent_dim = 100  # 噪声大小

        optimizer = Adam(0.0002, 0.5)  # 优化器,学习率0.0002

        self.generator = self.build_generator()  # 构建生成器
        self.discriminator = self.build_discriminator()  # 构建判别器
        # 判别器训练的配置
        self.discriminator.compile(loss=['binary_crossentropy'],  # 二进制交叉熵损失函数
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        # 联合训练,固定判别器
        self.discriminator.trainable = False
        noise = Input(shape=(100,))
        label = Input(shape=(1,))
        img = self.generator([noise, label])  # 生成的图像
        valid = self.discriminator([img, label])  # 判别生成的图像
        self.combined = Model([noise, label], valid)
        self.combined.compile(loss=['binary_crossentropy'],  # 二进制交叉熵损失函数
                              optimizer=optimizer,
                              metrics=['accuracy'])

    # 生成器
    def build_generator(self):
        model = Sequential()  # 定义网络层

        # 第一层
        model.add(Dense(256, input_dim=self.latent_dim))  # 全连接层,256个神经元,输入维度100
        model.add(LeakyReLU(alpha=0.2))  # 激活层
        model.add(BatchNormalization(momentum=0.8))  # BN层,动量0.8

        # 第二层
        model.add(Dense(512))  # 全连接层
        model.add(LeakyReLU(alpha=0.2))  # 激活层
        model.add(BatchNormalization(momentum=0.8))  # BN层,动量0.8

        # 第三层
        model.add(Dense(1024))  # 全连接层
        model.add(LeakyReLU(alpha=0.2))  # 激活层
        model.add(BatchNormalization(momentum=0.8))  # BN层,动量0.8

        # 输出层
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))  # 计算图像尺寸,激活函数tanh
        model.add(Reshape(self.img_shape))  # Reshape层,输入的是噪声,需要的是图像,转换为图像

        model.summary()  # 记录参数情况

        # 定义输入
        noise = Input(shape=(self.latent_dim,))  # 生成器的输入维度
        label = Input(shape=(1,), dtype='int32')  # 生成器的标签维度,1维,类型int

        # 使输入Y和X的维度一致。将10个种类的label映射到latent_dim维度
        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))  # 输入维度,输出维度,转换的变量label
        # Flatten() 将100维转化为(None, 100),这里None会随着batch而改变

        # 合并噪声和类别
        model_input = multiply([noise, label_embedding])  # 合并方法:对应位置相乘

        # 预测模型输出
        img = model(model_input)  # 生成图片

        return Model([noise, label], img)  # [输入],输出。输入按noise和label,合并由内部完成

    # 判别器
    def build_discriminator(self):
        model = Sequential()  # 定义网络层

        # 第一层
        model.add(Dense(512, input_dim=np.prod(self.img_shape)))  # 全连接层,512个神经元,输入维度784
        model.add(LeakyReLU(alpha=0.2))  # 激活层

        # 第二层
        model.add(Dense(512))  # 全连接层
        model.add(LeakyReLU(alpha=0.2))  # 激活层
        model.add(Dropout(0.4))  # Dropout层,防止过拟合,提高泛化性

        # 第三层
        model.add(Dense(512))  # 全连接层
        model.add(LeakyReLU(alpha=0.2))  # 激活层
        model.add(Dropout(0.4))  # Dropout层,防止过拟合,提高泛化性

        # 输出层
        model.add(Dense(1, activation='sigmoid'))

        model.summary()  # 记录参数情况

        # 定义输入
        img = Input(shape=self.img_shape)  # 输入图片
        label = Input(shape=(1,), dtype='int32')  # 输入标签

        # 使输入Y和X的维度一致。Flatten() 将100维转化为(None, 784),这里None会随着batch而改变
        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))  # 输入维度,输出维度,转换的变量label
        flat_img = Flatten()(img)

        # 将图片和类别合并
        model_input = multiply([flat_img, label_embedding])  # 合并方法:对应位置相乘

        # 模型输出结果
        validity = model(model_input)  # 获取输出概率结果

        return Model([img, label], validity)  # [输入],输出

    # 训练
    def train(self, epochs, batch_size=128, sample_interval=50):
        # 获取数据集
        (X_train, Y_train,), (_, _) = mnist.load_data()  # 下载数据集,空的表示不要测试集

        # 将获取的图像转化为-1到1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)  # 扩展维度,在第三维扩展。将60000*28*28的图片扩展为60000*28*28*1

        # 将标签大小变为60000*1
        Y_train = Y_train.reshape(-1, 1)  # -1自动计算第0维的维度空间数

        # 写入 真实输出 与 虚假输出
        valid = np.ones((batch_size, 1))  # 每行为一张图片
        fake = np.zeros((batch_size, 1))  # 每行为一张图片
        # imgs shape(batch_size, 28, 281)
        # labels shape(32, 1)

        for epoch in range(epochs):
            # 训练判别器
            # 从0~60000随机获取batch_size个索引数
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs, labels = X_train[idx], Y_train[idx]  # 获取图像和对应标签

            noise = np.random.normal(0, 1, (batch_size, self.latent_dim))  # 产生随机噪声

            gen_imgs = self.generator.predict([noise, labels])  # 生成虚假图片

            # 损失
            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

            # 训练生成器
            sample_label = np.random.randint(0, 10, batch_size).reshape(-1, 1)  # 随机生成样本标签

            # 固定判别器,训练生成器------在联合模型中
            g_loss = self.combined.train_on_batch([noise, sample_label], valid)  # 生成器随机生成的图像和随机产生的标签,骗过判别器

            # 绘制进度图
            print("%d [D loss: %f, acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], d_loss[1] * 100, g_loss[0]))

            # 每50次保存图像
            if (epoch + 1) % sample_interval == 0:
                self.sample_images(epoch)

            # 每训练5000次保存模型
            if (epoch + 1) % 5000 == 0:
                self.save_models(epoch)

    def sample_images(self, epoch):
        r, c = 2, 5  # 输出 2行5列的10张指定图像
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.arange(0, 10).reshape(-1, 1)

        gen_imgs = self.generator.predict([noise, sampled_labels])

        # Rescale images -1
        gen_imgs = 0.5 * gen_imgs + 0.5
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')
                axs[i, j].set_title("Digit: %d" % sampled_labels[cnt])
                axs[i, j].axis('off')
                cnt += 1
        fig.savefig(f"images/sd{epoch+1}.png")  # 文件路径和代码文件同目录
        plt.close()

    def save_models(self, epoch):
        self.generator.save(f"models/generator_epoch_{epoch+1}.h5")
        self.discriminator.save(f"models/discriminator_epoch_{epoch+1}.h5")
        self.combined.save(f"models/combined_epoch_{epoch+1}.h5")


if __name__ == '__main__':
    matplotlib.use('TkAgg')  # 设置后端为TkAgg
    cgan = CGAN()
    # 训练轮数20000,一次处理32张图片,每200保存一次生成的已知标签的生成图像
    cgan.train(epochs=20000, batch_size=32, sample_interval=200)
相关推荐
「、皓子~11 分钟前
AI创作系列(2):UniApp跨端开发实战 - 海狸IM移动端完全由AI编写
开发语言·人工智能·uni-app·开源·vue·开源软件·ai编程
Sui_Network11 分钟前
WAYE.ai 为Sui 上 AI 的下一个时代赋能
大数据·前端·人工智能·物联网·游戏
BAOYUCompany11 分钟前
暴雨亮相2025中关村论坛数字金融与金融安全大会
大数据·人工智能
程序员的世界你不懂20 分钟前
Appium+python自动化(二十一)- Monkey指令操作手机
python·appium·自动化
belldeep43 分钟前
python 在基因研究中的应用,博德研究所:基因编辑
python·基因·broad institute·博德研究所·基因编辑
星火飞码iFlyCode1 小时前
【无标题】
java·前端·人工智能·算法
TMT星球1 小时前
“储能+热泵+AI”三维驱动,美的能源定义能源科技新未来
人工智能·科技·能源
XMYX-01 小时前
Python 实现一个带进度条的 URL 批量下载工具(含 GUI 界面)
开发语言·python
大师兄带你刨AI1 小时前
「AI产业」| 《2025中国低空经济商业洞察报告(商业无人机应用篇)》
大数据·人工智能
lul~1 小时前
[科研理论]无人机底层控制算法PID、LQR、MPC解析
c++·人工智能·无人机