吴恩达机器学习笔记 二十一 迁移学习 预训练

迁移学习(transfer learning):直接把神经网络拿来,前面的参数可以直接用,把最后一层改了。

两种训练参数的方式:

1.只训练输出层的参数

2.训练所有参数

当只有一个小数据集的时候,第一种方法很好;若数据集稍微大一些的话第二个方法更好。

两个步骤:

监督预训练(supervised pretraining):在一个大数据集上训练,得到参数

微调(fine tuning):进一步训练,微调权重以适应具体的应用

迁移学习的另一个优点:可以直接用别人训练好的神经网络

迁移学习为什么有用? 例如图像识别来说,一个识别猫狗的神经网络的某些隐藏层可能是用来识别边界、识别线条,这些都是一些基本的操作,所以也可以直接用来识别手写数字。

相关推荐
CSDN_PBB3 小时前
[STM32 - 野火] - - - 固件库学习笔记 - - - 十五.设置FLASH的读写保护及解除
笔记·stm32·学习
WHATEVER_LEO6 小时前
【每日论文】Latent Radiance Fields with 3D-aware 2D Representations
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理
夜流冰8 小时前
编程参考 - C语言可变参数
笔记
格雷亚赛克斯8 小时前
Qt笔记31-69
数据库·笔记·qt
Long_poem8 小时前
【自学笔记】版本控制与持续集成基础知识点总览-持续更新
笔记·ci/cd
望云山1909 小时前
第二章:16.3 构建决策树的过程
算法·决策树·机器学习
Stream٩( 'ω' )و9 小时前
109~133笔记
笔记
weixin_502539859 小时前
rust学习笔记2-rust的包管理工具Cargo使用
笔记·学习·rust
ywfwyht10 小时前
根据deepseek模型微调训练自动驾驶模型及数据集的思路
人工智能·机器学习·自动驾驶