吴恩达机器学习笔记 二十一 迁移学习 预训练

迁移学习(transfer learning):直接把神经网络拿来,前面的参数可以直接用,把最后一层改了。

两种训练参数的方式:

1.只训练输出层的参数

2.训练所有参数

当只有一个小数据集的时候,第一种方法很好;若数据集稍微大一些的话第二个方法更好。

两个步骤:

监督预训练(supervised pretraining):在一个大数据集上训练,得到参数

微调(fine tuning):进一步训练,微调权重以适应具体的应用

迁移学习的另一个优点:可以直接用别人训练好的神经网络

迁移学习为什么有用? 例如图像识别来说,一个识别猫狗的神经网络的某些隐藏层可能是用来识别边界、识别线条,这些都是一些基本的操作,所以也可以直接用来识别手写数字。

相关推荐
大数据追光猿7 小时前
【大数据Doris】生产环境,Doris主键模型全表7000万数据更新写入为什么那么慢?
大数据·经验分享·笔记·性能优化·doris
sevenez7 小时前
Vibe Coding 实战笔记:从“修好了C坏了AB”到企业级数据库架构重构
c语言·笔记·数据库架构
智嵌电子7 小时前
【笔记篇】【硬件基础篇】模拟电子技术基础 (童诗白) 第10章 模拟电子电路读图
笔记·单片机·嵌入式硬件
橙汁味的风7 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
极客小云7 小时前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp
2301_800050998 小时前
mysql
数据库·笔记·mysql
武子康8 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习
油泼辣子多加8 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
QT 小鲜肉8 小时前
【Linux命令大全】001.文件管理之mmove命令(实操篇)
linux·服务器·前端·chrome·笔记
不会学习?8 小时前
markdown笔记分享
经验分享·笔记