吴恩达机器学习笔记 二十一 迁移学习 预训练

迁移学习(transfer learning):直接把神经网络拿来,前面的参数可以直接用,把最后一层改了。

两种训练参数的方式:

1.只训练输出层的参数

2.训练所有参数

当只有一个小数据集的时候,第一种方法很好;若数据集稍微大一些的话第二个方法更好。

两个步骤:

监督预训练(supervised pretraining):在一个大数据集上训练,得到参数

微调(fine tuning):进一步训练,微调权重以适应具体的应用

迁移学习的另一个优点:可以直接用别人训练好的神经网络

迁移学习为什么有用? 例如图像识别来说,一个识别猫狗的神经网络的某些隐藏层可能是用来识别边界、识别线条,这些都是一些基本的操作,所以也可以直接用来识别手写数字。

相关推荐
这张生成的图像能检测吗7 分钟前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
晓梦.26 分钟前
Vue3学习笔记
笔记·学习
思成不止于此1 小时前
【MySQL 零基础入门】DQL 核心语法(二):表条件查询与分组查询篇
android·数据库·笔记·学习·mysql
SadSunset2 小时前
(15)抽象工厂模式(了解)
java·笔记·后端·spring·抽象工厂模式
hd51cc3 小时前
MFC控件 学习笔记二
笔记·学习·mfc
core5123 小时前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
JoannaJuanCV4 小时前
自动驾驶—CARLA 仿真(1)安装与demo测试
人工智能·机器学习·自动驾驶·carla
Jack___Xue5 小时前
LangChain实战快速入门笔记(二)--LangChain使用之Model I/O
笔记·langchain
遇到困难睡大觉哈哈5 小时前
HarmonyOS —— Remote Communication Kit 拦截器(Interceptor)高阶定制能力笔记
笔记·华为·harmonyos