吴恩达机器学习笔记 二十一 迁移学习 预训练

迁移学习(transfer learning):直接把神经网络拿来,前面的参数可以直接用,把最后一层改了。

两种训练参数的方式:

1.只训练输出层的参数

2.训练所有参数

当只有一个小数据集的时候,第一种方法很好;若数据集稍微大一些的话第二个方法更好。

两个步骤:

监督预训练(supervised pretraining):在一个大数据集上训练,得到参数

微调(fine tuning):进一步训练,微调权重以适应具体的应用

迁移学习的另一个优点:可以直接用别人训练好的神经网络

迁移学习为什么有用? 例如图像识别来说,一个识别猫狗的神经网络的某些隐藏层可能是用来识别边界、识别线条,这些都是一些基本的操作,所以也可以直接用来识别手写数字。

相关推荐
西西学代码19 分钟前
aa---(12)
笔记
航Hang*20 分钟前
第3章:复习篇——第1节:创建和管理数据库---题库
数据库·笔记·sql·学习·期末·复习
降临-max1 小时前
JavaWeb企业级开发---Mybatis
java·开发语言·笔记·学习·mybatis
知乎的哥廷根数学学派1 小时前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
chen_jared2 小时前
反对称矩阵的性质和几何意义
人工智能·算法·机器学习
Pyeako2 小时前
机器学习--矿物数据清洗(六种填充方法)
人工智能·python·随机森林·机器学习·pycharm·线性回归·数据清洗
m0_626535202 小时前
learning english 笔记
笔记
im_AMBER3 小时前
数据结构 18 【复习】广义表 | 各种内部排序 | 二叉排序树的平均查找长度 ASL
数据结构·笔记·学习·排序算法
chilavert3183 小时前
DashGO框架开发应用的笔记-1
笔记
信息快讯3 小时前
AI+有限元:复合材料研发的“时间魔法”,从10年到3周的范式革命
人工智能·机器学习·材料工程·复合材料