论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客

1,整体结构

依然是一个双分支结构,总体结构如下:

其中一个是全卷积分支,一个是Transformer分支。

和FCBFormer不同的是,对两个分支都做了一些修改。

2,FCB分支

本文没有画FCB分支的整体结构,我们借用一下FCBFormer的结构图看一下:

相比FCBFormer,FCB-SwinV2 Transformer模型中的FCB分支进行了以下主要改进:

1)通道维度增加:FCB分支的通道维度被增加,以匹配从SwinV2 Transformer-UNET分支输出的通道维度数量。这样做是为了确保两个分支的输出可以在合并之前具有相同的维度,从而更有效地结合两种架构的优势。

2)组归一化顺序调整:在FCB分支的残差块(RB)中,组归一化(GN)的顺序被调整,以适应SwinV2 Transformer中的残差后归一化(residual post normalization)方法。RB模块的调整如下:

左边为原来的RB模块,右边是本文用的RB模块。主要是把先归一化再卷积,调整为先卷积再做归一化。

3)残差块改进:残差块的设计受到了SwinV2 Transformer中残差后归一化方法的启发。在FCB-SwinV2 Transformer中,残差块的归一化步骤被放置在卷积层之后,这与原始FCBFormer中的顺序不同。

3,TB分支

TB模块采用了SwinV2 Transformer作为其核心,SwinV2 Transformer通过引入"残差后归一化"(residual post normalization)和修改注意力机制来优化原始的Swin Transformer。

解码器模块(scse)如下:

scse模块由cse和sse两个子模块构成。

1)CSE(Channel Squeeze and Excitation)模块是一种注意力机制,它通过显式地建模通道间的依赖关系来增强网络的特征表示能力。

CSE整体结构:

输入特征图: F
1. 通道全局平均池化: G = Global_Average_Pooling(F)
2. 卷积和激活: H = Activation(Conv(G))
3. 逐元素乘法: Output = H * F

2)SSE(Spatial Squeeze and Excitation)模块是一种用于增强特征图中空间特征的注意力机制。

SSE整体结构:

输入特征图: F
1. 通道压缩: G = Conv(F)  # 使用1x1卷积核
2. 空间激励: H = Activation(G)
3. 逐元素乘法: Output = H * F

把编码器和解码器按照UNET的结构组合起来就是TB分支。

4,实验结果:

相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦3 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐3 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
96774 小时前
对抗样本存在的原因
深度学习
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao4 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama