论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客

1,整体结构

依然是一个双分支结构,总体结构如下:

其中一个是全卷积分支,一个是Transformer分支。

和FCBFormer不同的是,对两个分支都做了一些修改。

2,FCB分支

本文没有画FCB分支的整体结构,我们借用一下FCBFormer的结构图看一下:

相比FCBFormer,FCB-SwinV2 Transformer模型中的FCB分支进行了以下主要改进:

1)通道维度增加:FCB分支的通道维度被增加,以匹配从SwinV2 Transformer-UNET分支输出的通道维度数量。这样做是为了确保两个分支的输出可以在合并之前具有相同的维度,从而更有效地结合两种架构的优势。

2)组归一化顺序调整:在FCB分支的残差块(RB)中,组归一化(GN)的顺序被调整,以适应SwinV2 Transformer中的残差后归一化(residual post normalization)方法。RB模块的调整如下:

左边为原来的RB模块,右边是本文用的RB模块。主要是把先归一化再卷积,调整为先卷积再做归一化。

3)残差块改进:残差块的设计受到了SwinV2 Transformer中残差后归一化方法的启发。在FCB-SwinV2 Transformer中,残差块的归一化步骤被放置在卷积层之后,这与原始FCBFormer中的顺序不同。

3,TB分支

TB模块采用了SwinV2 Transformer作为其核心,SwinV2 Transformer通过引入"残差后归一化"(residual post normalization)和修改注意力机制来优化原始的Swin Transformer。

解码器模块(scse)如下:

scse模块由cse和sse两个子模块构成。

1)CSE(Channel Squeeze and Excitation)模块是一种注意力机制,它通过显式地建模通道间的依赖关系来增强网络的特征表示能力。

CSE整体结构:

复制代码
输入特征图: F
1. 通道全局平均池化: G = Global_Average_Pooling(F)
2. 卷积和激活: H = Activation(Conv(G))
3. 逐元素乘法: Output = H * F

2)SSE(Spatial Squeeze and Excitation)模块是一种用于增强特征图中空间特征的注意力机制。

SSE整体结构:

复制代码
输入特征图: F
1. 通道压缩: G = Conv(F)  # 使用1x1卷积核
2. 空间激励: H = Activation(G)
3. 逐元素乘法: Output = H * F

把编码器和解码器按照UNET的结构组合起来就是TB分支。

4,实验结果:

相关推荐
汗流浃背了吧,老弟!14 分钟前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
软件聚导航22 分钟前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信37 分钟前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~41 分钟前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同76542 分钟前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑44 分钟前
用RedisVL构建长期记忆
人工智能
J_Xiong01171 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper1 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd1 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程