论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客

1,整体结构

依然是一个双分支结构,总体结构如下:

其中一个是全卷积分支,一个是Transformer分支。

和FCBFormer不同的是,对两个分支都做了一些修改。

2,FCB分支

本文没有画FCB分支的整体结构,我们借用一下FCBFormer的结构图看一下:

相比FCBFormer,FCB-SwinV2 Transformer模型中的FCB分支进行了以下主要改进:

1)通道维度增加:FCB分支的通道维度被增加,以匹配从SwinV2 Transformer-UNET分支输出的通道维度数量。这样做是为了确保两个分支的输出可以在合并之前具有相同的维度,从而更有效地结合两种架构的优势。

2)组归一化顺序调整:在FCB分支的残差块(RB)中,组归一化(GN)的顺序被调整,以适应SwinV2 Transformer中的残差后归一化(residual post normalization)方法。RB模块的调整如下:

左边为原来的RB模块,右边是本文用的RB模块。主要是把先归一化再卷积,调整为先卷积再做归一化。

3)残差块改进:残差块的设计受到了SwinV2 Transformer中残差后归一化方法的启发。在FCB-SwinV2 Transformer中,残差块的归一化步骤被放置在卷积层之后,这与原始FCBFormer中的顺序不同。

3,TB分支

TB模块采用了SwinV2 Transformer作为其核心,SwinV2 Transformer通过引入"残差后归一化"(residual post normalization)和修改注意力机制来优化原始的Swin Transformer。

解码器模块(scse)如下:

scse模块由cse和sse两个子模块构成。

1)CSE(Channel Squeeze and Excitation)模块是一种注意力机制,它通过显式地建模通道间的依赖关系来增强网络的特征表示能力。

CSE整体结构:

复制代码
输入特征图: F
1. 通道全局平均池化: G = Global_Average_Pooling(F)
2. 卷积和激活: H = Activation(Conv(G))
3. 逐元素乘法: Output = H * F

2)SSE(Spatial Squeeze and Excitation)模块是一种用于增强特征图中空间特征的注意力机制。

SSE整体结构:

复制代码
输入特征图: F
1. 通道压缩: G = Conv(F)  # 使用1x1卷积核
2. 空间激励: H = Activation(G)
3. 逐元素乘法: Output = H * F

把编码器和解码器按照UNET的结构组合起来就是TB分支。

4,实验结果:

相关推荐
沃达德软件3 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么4 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐5 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识6 小时前
AI Agent
人工智能
猫头虎6 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子6 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.6 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术6 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java6 小时前
机器学习初级
人工智能·机器学习
陈奕昆6 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n