论文阅读:LAPFormer: A Light and Accurate PolypSegmentation Transformer

这是一个基于Transformer的轻量级图像分割模型。作者们使用MiT(Mix Transformer)作为编码器,并为LAPFormer设计了一个新颖的解码器,该解码器利用多尺度特征,并包含特征精炼模块和特征选择模块,以生成精细的息肉分割掩码。

1,模型的整体结构:

LAPFormer模型的整体结构是一个编解码器(Encoder-Decoder)架构,其中编码器基于Transformer,而解码器则是一个新颖的CNN结构。

2,编码器:

编码器分支会输出四个分辨率不同的特征图,用于捕捉不同尺度的特征。

其中MiT使用卷积核而不是位置编码(Positional Encoding, PE),这样做是为了在测试分辨率与训练分辨率不同时避免性能下降。卷积层被认为更适合于为Transformer提取位置信息。

MiT使用4x4的小图像块作为输入,这被证明有利于密集预测任务,如语义分割。

3,解码器:

解码器部分包含:特征精炼模块(FRM),特征选择模块(FSM),渐进特征融合(PFF)和低层连接。

1)特征精炼模块(FRM):

结构如下:

作用是增强局部特征并减少噪声。

2)特征选择模块(FSM)

在预测之前,FSM通过加权向量强调重要特征图并抑制冗余信息,从而帮助网络集中注意力于重要区域。本质是一个注意力机制。

3)渐进特征融合(PFF)

逐步融合来自上层和下层尺度的特征,减少低分辨率、高语义特征图与高分辨率、低语义特征图之间的信息差距。

4)低层连接

通过跳跃连接将FSM的输出特征图与渐进特征融合中的最低层特征图连接起来,以增强模型对息肉边界的预测能力。

4,实验结果:

相关推荐
聚客AI29 分钟前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
arron88991 小时前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
Coovally AI模型快速验证10 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
RaymondZhao3411 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
无规则ai12 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
网安INF13 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
张较瘦_15 小时前
[论文阅读] 软件工程工具 | EVOSCAT可视化工具如何重塑软件演化研究
论文阅读·软件工程
果粒橙_LGC15 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
AustinCyy15 小时前
【论文笔记】Multi-Agent Based Character Simulation for Story Writing
论文阅读
雷达学弱狗15 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习