论文阅读:LAPFormer: A Light and Accurate PolypSegmentation Transformer

这是一个基于Transformer的轻量级图像分割模型。作者们使用MiT(Mix Transformer)作为编码器,并为LAPFormer设计了一个新颖的解码器,该解码器利用多尺度特征,并包含特征精炼模块和特征选择模块,以生成精细的息肉分割掩码。

1,模型的整体结构:

LAPFormer模型的整体结构是一个编解码器(Encoder-Decoder)架构,其中编码器基于Transformer,而解码器则是一个新颖的CNN结构。

2,编码器:

编码器分支会输出四个分辨率不同的特征图,用于捕捉不同尺度的特征。

其中MiT使用卷积核而不是位置编码(Positional Encoding, PE),这样做是为了在测试分辨率与训练分辨率不同时避免性能下降。卷积层被认为更适合于为Transformer提取位置信息。

MiT使用4x4的小图像块作为输入,这被证明有利于密集预测任务,如语义分割。

3,解码器:

解码器部分包含:特征精炼模块(FRM),特征选择模块(FSM),渐进特征融合(PFF)和低层连接。

1)特征精炼模块(FRM):

结构如下:

作用是增强局部特征并减少噪声。

2)特征选择模块(FSM)

在预测之前,FSM通过加权向量强调重要特征图并抑制冗余信息,从而帮助网络集中注意力于重要区域。本质是一个注意力机制。

3)渐进特征融合(PFF)

逐步融合来自上层和下层尺度的特征,减少低分辨率、高语义特征图与高分辨率、低语义特征图之间的信息差距。

4)低层连接

通过跳跃连接将FSM的输出特征图与渐进特征融合中的最低层特征图连接起来,以增强模型对息肉边界的预测能力。

4,实验结果:

相关推荐
koo36414 分钟前
pytorch深度学习笔记19
pytorch·笔记·深度学习
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅2 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits2 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld3 小时前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习
deephub3 小时前
让 AI 智能体学会自我进化:Agent Lightning 实战入门
人工智能·深度学习·大语言模型·agent
Loo国昌3 小时前
【垂类模型数据工程】第四阶段:高性能 Embedding 实战:从双编码器架构到 InfoNCE 损失函数详解
人工智能·后端·深度学习·自然语言处理·架构·transformer·embedding
Cemtery1163 小时前
Day40 早停策略和模型权重的保存
人工智能·python·深度学习·机器学习
醒了就刷牙3 小时前
MovieNet
论文阅读·人工智能·论文笔记
盼小辉丶4 小时前
PyTorch实战(27)——自动混合精度训练
pytorch·深度学习·混合精度训练