论文阅读:LAPFormer: A Light and Accurate PolypSegmentation Transformer

这是一个基于Transformer的轻量级图像分割模型。作者们使用MiT(Mix Transformer)作为编码器,并为LAPFormer设计了一个新颖的解码器,该解码器利用多尺度特征,并包含特征精炼模块和特征选择模块,以生成精细的息肉分割掩码。

1,模型的整体结构:

LAPFormer模型的整体结构是一个编解码器(Encoder-Decoder)架构,其中编码器基于Transformer,而解码器则是一个新颖的CNN结构。

2,编码器:

编码器分支会输出四个分辨率不同的特征图,用于捕捉不同尺度的特征。

其中MiT使用卷积核而不是位置编码(Positional Encoding, PE),这样做是为了在测试分辨率与训练分辨率不同时避免性能下降。卷积层被认为更适合于为Transformer提取位置信息。

MiT使用4x4的小图像块作为输入,这被证明有利于密集预测任务,如语义分割。

3,解码器:

解码器部分包含:特征精炼模块(FRM),特征选择模块(FSM),渐进特征融合(PFF)和低层连接。

1)特征精炼模块(FRM):

结构如下:

作用是增强局部特征并减少噪声。

2)特征选择模块(FSM)

在预测之前,FSM通过加权向量强调重要特征图并抑制冗余信息,从而帮助网络集中注意力于重要区域。本质是一个注意力机制。

3)渐进特征融合(PFF)

逐步融合来自上层和下层尺度的特征,减少低分辨率、高语义特征图与高分辨率、低语义特征图之间的信息差距。

4)低层连接

通过跳跃连接将FSM的输出特征图与渐进特征融合中的最低层特征图连接起来,以增强模型对息肉边界的预测能力。

4,实验结果:

相关推荐
子午几秒前
【2026原创】动物识别系统~Python+深度学习+人工智能+模型训练+图像识别
人工智能·python·深度学习
victory04317 分钟前
大模型学习阶段总结和下一阶段展望
深度学习·学习·大模型
摘星观月14 分钟前
【三维重建2】TCPFormer以及NeRF相关SOTA方法
人工智能·深度学习
人工小情绪19 分钟前
深度学习模型部署
人工智能·深度学习
cyyt1 小时前
深度学习周报(1.05~1.11)
人工智能·深度学习
AI人工智能+1 小时前
专利证书识别技术;通过计算机视觉与深度学习,实现了专利文档从纸质到结构化数据的智能转换
深度学习·ocr·专利证书识别
没学上了1 小时前
SLM-多头注意力机制
pytorch·python·深度学习
大模型最新论文速读1 小时前
「英伟达改进 GRPO」解决多奖励场景优势坍缩问题
人工智能·深度学习·自然语言处理
机器学习之心2 小时前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型分类预测Matlab实现
cnn·gru·transformer·cnn-gru·五模型分类预测
子午2 小时前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习