GraphFrames路径边多值字段过滤

  1. 背景:

GraphFrames是spark封装的关于图算子的操作,并且可以兼容pyspark的调用方式.里面包括了创建图,遍历图,过滤图的一些操作。在创建图的过程需要定义图上的节点和图的边,边的定义可以一般为三元组,即:(A, B, EdgeType),当按某种条件继续边的过滤时,会有两种情况:一是对RDD里的某一列内部进行过滤;二是过滤前后两列的情况,比如在边的路径上,按前后两条边的某种关系继续过滤,如按日期继续排序。该问题定义为DataFrame RDD对多值字段的过滤解析问题,即:RDD中某个字段含有多个值,多值的表达一般为array,struct等。

2、方法

(1)struct

对spark的dataframe多值字段的过滤,首先通过dataFrame.printSchema()打印看到df中每个字段的类型。

对于这种以结构体struct存储,过滤的方法采用

dataframe.select("first.data").show(),通过对象.属性的方式实现对某一个属性的引用;进而通过filter方法进行过滤

dataframe.filter("sec.date > first.date and third.date > sec.date").show()

(2)array

df = spark.createDataFrame([('a',[1,2,3]), ('b', [4,5,6])], ['key', 'values'])

df.printSchema()

root

|-- key: string (nullable = true)

|-- values: array (nullable = true)

| |-- element: long (containsNull = true)

df.select(expr('key'), expr('values[1]')).show()

df.selectExpr('key', 'values[1]').show()

df.withColumn('c1', df['values'].getItem(1)).drop('values').show()

(3)vector

将array转成vector的方法:

from pyspark.ml.linalg import Vectors, VectorUDT

from pyspark.sql.functions import udf

list_to_vector_udf = udf(lambda l: Vectors.dense(l), VectorUDT())

df = df.select('key', list_to_vector_udf(df['values']).alias('values'))

df.show()

df.printSchema()

root

|-- key: string (nullable = true)

|-- values: vector (nullable = true)

from pyspark.sql.functions import udf

from pyspark.sql.types import FloatType

firstelement=udf(lambda v:float(v[0]),FloatType())

df.select(firstelement('values').alias('val1')).show()

  1. 总结

对dtaframe的多值字段进行提取和过滤,spark都提供了对应的方法,根据自己的需要进行不同的过滤

相关推荐
梦里不知身是客117 小时前
spark读取table中的数据【hive】
大数据·hive·spark
赞奇科技Xsuperzone9 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
更深兼春远11 小时前
Spark on Yarn安装部署
大数据·分布式·spark
涤生大数据21 小时前
日均亿级数据的实时分析:Doris如何接过Spark的接力棒?
大数据·spark·doris·实时计算·大数据开发·实时分析·实时技术
Hello.Reader2 天前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
梦里不知身是客112 天前
sparkSQL读取数据的方式
spark
少废话h3 天前
Spark 中数据读取方式详解:SparkSQL(DataFrame)与 SparkCore(RDD)方法对比及实践
大数据·sql·spark
大千AI助手3 天前
分布式奇异值分解(SVD)详解
人工智能·分布式·spark·奇异值分解·svd·矩阵分解·分布式svd
Hello.Reader3 天前
用 Spark Shell 做交互式数据分析从入门到自包含应用
大数据·数据分析·spark
梦里不知身是客113 天前
Spark介绍
大数据·分布式·spark