GraphFrames路径边多值字段过滤

  1. 背景:

GraphFrames是spark封装的关于图算子的操作,并且可以兼容pyspark的调用方式.里面包括了创建图,遍历图,过滤图的一些操作。在创建图的过程需要定义图上的节点和图的边,边的定义可以一般为三元组,即:(A, B, EdgeType),当按某种条件继续边的过滤时,会有两种情况:一是对RDD里的某一列内部进行过滤;二是过滤前后两列的情况,比如在边的路径上,按前后两条边的某种关系继续过滤,如按日期继续排序。该问题定义为DataFrame RDD对多值字段的过滤解析问题,即:RDD中某个字段含有多个值,多值的表达一般为array,struct等。

2、方法

(1)struct

对spark的dataframe多值字段的过滤,首先通过dataFrame.printSchema()打印看到df中每个字段的类型。

对于这种以结构体struct存储,过滤的方法采用

dataframe.select("first.data").show(),通过对象.属性的方式实现对某一个属性的引用;进而通过filter方法进行过滤

dataframe.filter("sec.date > first.date and third.date > sec.date").show()

(2)array

df = spark.createDataFrame([('a',[1,2,3]), ('b', [4,5,6])], ['key', 'values'])

df.printSchema()

root

|-- key: string (nullable = true)

|-- values: array (nullable = true)

| |-- element: long (containsNull = true)

df.select(expr('key'), expr('values[1]')).show()

df.selectExpr('key', 'values[1]').show()

df.withColumn('c1', df['values'].getItem(1)).drop('values').show()

(3)vector

将array转成vector的方法:

from pyspark.ml.linalg import Vectors, VectorUDT

from pyspark.sql.functions import udf

list_to_vector_udf = udf(lambda l: Vectors.dense(l), VectorUDT())

df = df.select('key', list_to_vector_udf(df['values']).alias('values'))

df.show()

df.printSchema()

root

|-- key: string (nullable = true)

|-- values: vector (nullable = true)

from pyspark.sql.functions import udf

from pyspark.sql.types import FloatType

firstelement=udf(lambda v:float(v[0]),FloatType())

df.select(firstelement('values').alias('val1')).show()

  1. 总结

对dtaframe的多值字段进行提取和过滤,spark都提供了对应的方法,根据自己的需要进行不同的过滤

相关推荐
IT研究室15 小时前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
道一云黑板报18 小时前
Spark生态全景图:图计算与边缘计算的创新实践
大数据·性能优化·spark·边缘计算
Lansonli18 小时前
大数据Spark(六十三):RDD-Resilient Distributed Dataset
大数据·分布式·spark
BYSJMG18 小时前
计算机毕业设计选题:基于Spark+Hadoop的健康饮食营养数据分析系统【源码+文档+调试】
大数据·vue.js·hadoop·分布式·spark·django·课程设计
武子康19 小时前
大数据-92 Spark 深入解析 Spark Standalone 模式:组件构成、提交流程与性能优化
大数据·后端·spark
计算机毕业设计木哥1 天前
计算机毕业设计 基于Python+Django的医疗数据分析系统
开发语言·hadoop·后端·python·spark·django·课程设计
计算机毕业设计木哥1 天前
计算机毕设选题:基于Python+Django的B站数据分析系统的设计与实现【源码+文档+调试】
java·开发语言·后端·python·spark·django·课程设计
IT研究室2 天前
大数据毕业设计选题推荐-基于大数据的贵州茅台股票数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的国家基站整点数据分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·数据可视化
武子康2 天前
大数据-91 Spark广播变量:高效共享只读数据的最佳实践 RDD+Scala编程
大数据·后端·spark