神经网络处理器优化设计(一)

神经网络处理器优化设计,涉及到一些特殊和通用处理流程,一是降低硬件成本,二是提高性能。

一 跨层流水线调度

这里主要针对深度可分离卷积,将Pointwise conv与Depthwise卷积并行处理,好处是,减小整体流水时延,增加吞吐量,同时隐藏中间层数据写入/读出DDR。需要平衡两者之间的缓存和吞吐速率。

二 输入通道聚合

通常,输入特征图第一层输入的通道一般是RGB三通道或者单通道(灰度图或者红外)。而我们自己在设计神经网络处理器的输入通道并行度Tn时,一般Tn远大于3或者1,因此会在计算第一层输入特征图的卷积计算时,导致计算单元利用率较低。如下图所示。

以Tn=32,Kernel=3*3为例,通道聚合前,第一层卷积计算过程中,一个时钟周期,计算引擎32个输入并行度仅有3个特征图通道参与有效计算,PE计算利用率仅有3/32,造成计算资源浪费;按照图b,对输入通道进行重排和聚合后,在一个时钟周期内,计算引擎可以并行计算27个通道的卷积计算(一个完整3*3卷积窗口重排聚合为27的并行像素),PE计算效率提升为27/32,极大提升加速器吞吐量。

接下来给出一种简化的通道聚合硬件实现方案。该方案以较小的资源消耗和代价,数据调度架构和控制和其他层处理复用相同逻辑,只是针对第一层特征图做一些预处理,即可完成通道融合处理。

三 多算子融合

待补充

相关推荐
良策金宝AI2 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据2 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi777772 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔2 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)3 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家3 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata3 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub4 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19914 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann