神经网络处理器优化设计(一)

神经网络处理器优化设计,涉及到一些特殊和通用处理流程,一是降低硬件成本,二是提高性能。

一 跨层流水线调度

这里主要针对深度可分离卷积,将Pointwise conv与Depthwise卷积并行处理,好处是,减小整体流水时延,增加吞吐量,同时隐藏中间层数据写入/读出DDR。需要平衡两者之间的缓存和吞吐速率。

二 输入通道聚合

通常,输入特征图第一层输入的通道一般是RGB三通道或者单通道(灰度图或者红外)。而我们自己在设计神经网络处理器的输入通道并行度Tn时,一般Tn远大于3或者1,因此会在计算第一层输入特征图的卷积计算时,导致计算单元利用率较低。如下图所示。

以Tn=32,Kernel=3*3为例,通道聚合前,第一层卷积计算过程中,一个时钟周期,计算引擎32个输入并行度仅有3个特征图通道参与有效计算,PE计算利用率仅有3/32,造成计算资源浪费;按照图b,对输入通道进行重排和聚合后,在一个时钟周期内,计算引擎可以并行计算27个通道的卷积计算(一个完整3*3卷积窗口重排聚合为27的并行像素),PE计算效率提升为27/32,极大提升加速器吞吐量。

接下来给出一种简化的通道聚合硬件实现方案。该方案以较小的资源消耗和代价,数据调度架构和控制和其他层处理复用相同逻辑,只是针对第一层特征图做一些预处理,即可完成通道融合处理。

三 多算子融合

待补充

相关推荐
编码小哥4 分钟前
OpenCV形态学操作:腐蚀与膨胀原理解析
人工智能·opencv·计算机视觉
lbb 小魔仙9 分钟前
AI + 云原生实战:K8s 部署分布式训练集群,效率翻倍
人工智能·云原生·kubernetes
啊巴矲27 分钟前
小白从零开始勇闯人工智能:机器学习初级篇(随机森林)
人工智能·机器学习
技术小甜甜35 分钟前
[AI Agent] 如何在本地部署 Aider 并接入局域网 Ollama 模型,实现本地智能助手操作系统资源
人工智能·ai·自动化·agent
江湖独行侠37 分钟前
基于光学定位系统实现手术器械和CT模型的追踪
人工智能·信息可视化·健康医疗
格林威40 分钟前
跨设备图像拼接:统一色彩偏差的8个核心策略,附OpenCV+Halcon实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
Java中文社群41 分钟前
避坑指南!别再被N8N循环节点“调戏”了!为什么你的Done分支执行了多次?
人工智能·后端
hqyjzsb1 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
用户8599681677691 小时前
极客时间 PostgreSQL 进阶训练营(完结)
人工智能
大厂技术总监下海1 小时前
每日 1000 亿 Token 流量,开源 AI 网关 Portkey 如何打通 250+ 模型?
人工智能·开源