神经网络处理器优化设计(一)

神经网络处理器优化设计,涉及到一些特殊和通用处理流程,一是降低硬件成本,二是提高性能。

一 跨层流水线调度

这里主要针对深度可分离卷积,将Pointwise conv与Depthwise卷积并行处理,好处是,减小整体流水时延,增加吞吐量,同时隐藏中间层数据写入/读出DDR。需要平衡两者之间的缓存和吞吐速率。

二 输入通道聚合

通常,输入特征图第一层输入的通道一般是RGB三通道或者单通道(灰度图或者红外)。而我们自己在设计神经网络处理器的输入通道并行度Tn时,一般Tn远大于3或者1,因此会在计算第一层输入特征图的卷积计算时,导致计算单元利用率较低。如下图所示。

以Tn=32,Kernel=3*3为例,通道聚合前,第一层卷积计算过程中,一个时钟周期,计算引擎32个输入并行度仅有3个特征图通道参与有效计算,PE计算利用率仅有3/32,造成计算资源浪费;按照图b,对输入通道进行重排和聚合后,在一个时钟周期内,计算引擎可以并行计算27个通道的卷积计算(一个完整3*3卷积窗口重排聚合为27的并行像素),PE计算效率提升为27/32,极大提升加速器吞吐量。

接下来给出一种简化的通道聚合硬件实现方案。该方案以较小的资源消耗和代价,数据调度架构和控制和其他层处理复用相同逻辑,只是针对第一层特征图做一些预处理,即可完成通道融合处理。

三 多算子融合

待补充

相关推荐
一个处女座的程序猿几秒前
AI之Algorithms:TheAlgorithms_Python(所有用 Python 实现的算法)的简介、安装和使用方法、案例应用之详细攻略
人工智能·python·算法
西猫雷婶几秒前
CNN计算|原始矩阵扩充后的多维度卷积核计算效果
人工智能·pytorch·深度学习·神经网络·机器学习·矩阵·cnn
大白的编程笔记3 分钟前
语言模型(Language Model, LM)系统详解
人工智能·语言模型·自然语言处理
谷歌开发者4 分钟前
Web 开发指向标|在来源面板中使用 Chrome 开发者工具的 AI 辅助功能
前端·人工智能·chrome
Ma0407134 分钟前
【论文阅读20】MM-LLMs:多模态大语言模型的最新进展
人工智能·语言模型·多模态·综述
. . . . .5 分钟前
Chrome底层及Chrome-devtools-mcp
人工智能·chrome
aneasystone本尊7 分钟前
学习 LiteLLM 的防护栏机制
人工智能
szxinmai主板定制专家7 分钟前
RK3588+zynq7045 ARM+FPGA+AI解决方案,支持复旦微全国产化,应用于智能机器人等领域
arm开发·人工智能·fpga开发
serve the people8 分钟前
TensorFlow 中 “延迟变量创建(Deferred Variable Creation)” 机制
人工智能·python·tensorflow
MilieStone8 分钟前
抢占心血管诊疗高地:引入超导心磁图仪,为医院注入增长新动能
大数据·人工智能