神经网络处理器优化设计(一)

神经网络处理器优化设计,涉及到一些特殊和通用处理流程,一是降低硬件成本,二是提高性能。

一 跨层流水线调度

这里主要针对深度可分离卷积,将Pointwise conv与Depthwise卷积并行处理,好处是,减小整体流水时延,增加吞吐量,同时隐藏中间层数据写入/读出DDR。需要平衡两者之间的缓存和吞吐速率。

二 输入通道聚合

通常,输入特征图第一层输入的通道一般是RGB三通道或者单通道(灰度图或者红外)。而我们自己在设计神经网络处理器的输入通道并行度Tn时,一般Tn远大于3或者1,因此会在计算第一层输入特征图的卷积计算时,导致计算单元利用率较低。如下图所示。

以Tn=32,Kernel=3*3为例,通道聚合前,第一层卷积计算过程中,一个时钟周期,计算引擎32个输入并行度仅有3个特征图通道参与有效计算,PE计算利用率仅有3/32,造成计算资源浪费;按照图b,对输入通道进行重排和聚合后,在一个时钟周期内,计算引擎可以并行计算27个通道的卷积计算(一个完整3*3卷积窗口重排聚合为27的并行像素),PE计算效率提升为27/32,极大提升加速器吞吐量。

接下来给出一种简化的通道聚合硬件实现方案。该方案以较小的资源消耗和代价,数据调度架构和控制和其他层处理复用相同逻辑,只是针对第一层特征图做一些预处理,即可完成通道融合处理。

三 多算子融合

待补充

相关推荐
牛客企业服务6 分钟前
2025年AI面试防作弊指南:技术笔试如何识别异常行为
人工智能·面试·职场和发展
shayudiandian39 分钟前
CNN详解:卷积神经网络是如何识别图像的?
人工智能·深度学习·cnn
V_1565602721942 分钟前
2025年蚌埠市“三首产品”、市级服务型制造示范、市级企业技术中心等5个项目认定申报指南大全
大数据·人工智能·制造
盘古信息IMS1 小时前
AI算力时代,PCB制造如何借助盘古信息MOM构建数字化新范式?
人工智能·制造
集成显卡1 小时前
AI取名大师 | uni-app + Wot UI 跟随设备自动切换明暗主题
人工智能·ui·uni-app·外观配色
码上地球1 小时前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
愚公搬代码1 小时前
【愚公系列】《MCP协议与AI Agent开发》011-MCP协议标准与规范体系(交互协议与状态码体系)
人工智能·交互
小程故事多_801 小时前
LangGraph系列:多智能体终极方案,ReAct+MCP工业级供应链系统
人工智能·react.js·langchain
진영_1 小时前
深度学习打卡第R4周:LSTM-火灾温度预测
人工智能·深度学习·lstm
陈希瑞2 小时前
从 0 到 1:Vue3+Django打造现代化宠物商城系统(含AI智能顾问)
人工智能·django·宠物