神经网络处理器优化设计(一)

神经网络处理器优化设计,涉及到一些特殊和通用处理流程,一是降低硬件成本,二是提高性能。

一 跨层流水线调度

这里主要针对深度可分离卷积,将Pointwise conv与Depthwise卷积并行处理,好处是,减小整体流水时延,增加吞吐量,同时隐藏中间层数据写入/读出DDR。需要平衡两者之间的缓存和吞吐速率。

二 输入通道聚合

通常,输入特征图第一层输入的通道一般是RGB三通道或者单通道(灰度图或者红外)。而我们自己在设计神经网络处理器的输入通道并行度Tn时,一般Tn远大于3或者1,因此会在计算第一层输入特征图的卷积计算时,导致计算单元利用率较低。如下图所示。

以Tn=32,Kernel=3*3为例,通道聚合前,第一层卷积计算过程中,一个时钟周期,计算引擎32个输入并行度仅有3个特征图通道参与有效计算,PE计算利用率仅有3/32,造成计算资源浪费;按照图b,对输入通道进行重排和聚合后,在一个时钟周期内,计算引擎可以并行计算27个通道的卷积计算(一个完整3*3卷积窗口重排聚合为27的并行像素),PE计算效率提升为27/32,极大提升加速器吞吐量。

接下来给出一种简化的通道聚合硬件实现方案。该方案以较小的资源消耗和代价,数据调度架构和控制和其他层处理复用相同逻辑,只是针对第一层特征图做一些预处理,即可完成通道融合处理。

三 多算子融合

待补充

相关推荐
苍何10 分钟前
Openclaw + OpenCode 才是 vibe coding 的最棒组合!
人工智能
AI360labs_atyun30 分钟前
字节AI双王炸来了!Seedance 2.0 + Seedream 5.0
人工智能·科技·学习·百度·ai
AIMarketing35 分钟前
2026 年 GEO 综合实力服务商推荐 行业研究与实践分析
人工智能
科技圈快讯1 小时前
破解企业低碳转型难题,港华商会携手碳启元出击
大数据·人工智能
hhzz1 小时前
【Vision人工智能设计 】ComfyUI 基础文生图设计
人工智能·comfyui·视觉大模型·wan
有Li1 小时前
用于CBCT到CT合成的纹理保留扩散模型/文献速递-基于人工智能的医学影像技术
论文阅读·人工智能·深度学习·计算机视觉·文献
大模型最新论文速读1 小时前
NAtS-L: 自适应融合多种注意力架构,推理能力提高 36%
人工智能·深度学习·机器学习·语言模型·自然语言处理
TYFHVB121 小时前
11款CRM数字化方案横评:获客-履约-复购全链路能力对决
大数据·人工智能·架构·自动化·流程图
Dev7z1 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
魔乐社区1 小时前
来魔乐,一键获取OpenClaw (原Moltbolt/Clawdbot),告别部署烦恼!
人工智能·开源·agent·clawdbot·openclaw