动手学习深度学习之环境配置

创建conda虚拟环境

下载anaconda,安装到计算机,修改镜像源到国内

复制代码
show_channel_urls: true
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults

创建一个新的虚拟环境
conda create --name d2l python=3.9 -y
创建完成后,激活虚拟环境
conda activate d2l

安装CPU版本的pytorch

如果只有CPU,则只需要安装cpu版本的pytorch

复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

安装GPU版本的pytorch

如果需要利用GPU来学习,就需要安装GPU版本的Pytorch,

在安装之前需要先配置GPU环境,安装CUDA和CudaNN

  1. 安装CUDA

    输入如下命令查看GPU驱动信息
    nvidia-smi

从官网下载对应版本的安装程序CUDA Toolkit Archive Nvidia Developer

复制代码
https://developer.nvidia.com/cuda-toolkit-archive

安装(推荐自定义安装在有空余的盘中,我的安装地址:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ;D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1 )

验证:输入nvcc --version 进行检查

  1. 安装CudaNN

下载CudaNN

https://developer.nvidia.com/rdp/cudnn-download

将压缩包解压之安装路径下(D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)

验证:

  • 进入 d:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite
  • 运行bandwidthTest.exe
  • 输出结果Result = PASS,安装成功
  1. 安装gpu版本的pytorch
    在pytorch官网https://pytorch.org/找到对应的版本,复制指令安装

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装d2l软件包

复制代码
pip install d2l==0.17.6

运行

在pycharm切换项目的虚拟机为d2l,就可以运行了

如果在jupyternotebook中运行,就先用conda激活环境,再用命令行打开Jupyter notebook

相关推荐
落雨盛夏2 小时前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
臭东西的学习笔记6 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生6 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605226 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8887 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新7 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录7 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划7 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5207 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
求真求知的糖葫芦7 小时前
巴伦学习(一)一种新型补偿传输线巴伦论文学习笔记(自用)
笔记·学习·射频工程