动手学习深度学习之环境配置

创建conda虚拟环境

下载anaconda,安装到计算机,修改镜像源到国内

复制代码
show_channel_urls: true
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults

创建一个新的虚拟环境
conda create --name d2l python=3.9 -y
创建完成后,激活虚拟环境
conda activate d2l

安装CPU版本的pytorch

如果只有CPU,则只需要安装cpu版本的pytorch

复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

安装GPU版本的pytorch

如果需要利用GPU来学习,就需要安装GPU版本的Pytorch,

在安装之前需要先配置GPU环境,安装CUDA和CudaNN

  1. 安装CUDA

    输入如下命令查看GPU驱动信息
    nvidia-smi

从官网下载对应版本的安装程序CUDA Toolkit Archive Nvidia Developer

复制代码
https://developer.nvidia.com/cuda-toolkit-archive

安装(推荐自定义安装在有空余的盘中,我的安装地址:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ;D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1 )

验证:输入nvcc --version 进行检查

  1. 安装CudaNN

下载CudaNN

https://developer.nvidia.com/rdp/cudnn-download

将压缩包解压之安装路径下(D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)

验证:

  • 进入 d:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite
  • 运行bandwidthTest.exe
  • 输出结果Result = PASS,安装成功
  1. 安装gpu版本的pytorch
    在pytorch官网https://pytorch.org/找到对应的版本,复制指令安装

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装d2l软件包

复制代码
pip install d2l==0.17.6

运行

在pycharm切换项目的虚拟机为d2l,就可以运行了

如果在jupyternotebook中运行,就先用conda激活环境,再用命令行打开Jupyter notebook

相关推荐
好奇龙猫25 分钟前
【人工智能学习-AI入试相关题目练习-第七次】
人工智能·学习
Mao.O3 小时前
开源项目“AI思维圆桌”的介绍和对于当前AI编程的思考
人工智能
jake don3 小时前
AI 深度学习路线
人工智能·深度学习
jacGJ3 小时前
记录学习--文件读写
java·前端·学习
信创天地3 小时前
信创场景软件兼容性测试实战:适配国产软硬件生态,破解运行故障难题
人工智能·开源·dubbo·运维开发·risc-v
幻云20104 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
bst@微胖子4 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
枷锁—sha4 小时前
【PortSwigger Academy】SQL 注入绕过登录 (Login Bypass)
数据库·sql·学习·安全·网络安全
无风听海4 小时前
CBOW 模型中的输出层
人工智能·机器学习
汇智信科4 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统