动手学习深度学习之环境配置

创建conda虚拟环境

下载anaconda,安装到计算机,修改镜像源到国内

复制代码
show_channel_urls: true
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults

创建一个新的虚拟环境
conda create --name d2l python=3.9 -y
创建完成后,激活虚拟环境
conda activate d2l

安装CPU版本的pytorch

如果只有CPU,则只需要安装cpu版本的pytorch

复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

安装GPU版本的pytorch

如果需要利用GPU来学习,就需要安装GPU版本的Pytorch,

在安装之前需要先配置GPU环境,安装CUDA和CudaNN

  1. 安装CUDA

    输入如下命令查看GPU驱动信息
    nvidia-smi

从官网下载对应版本的安装程序CUDA Toolkit Archive Nvidia Developer

复制代码
https://developer.nvidia.com/cuda-toolkit-archive

安装(推荐自定义安装在有空余的盘中,我的安装地址:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ;D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1 )

验证:输入nvcc --version 进行检查

  1. 安装CudaNN

下载CudaNN

https://developer.nvidia.com/rdp/cudnn-download

将压缩包解压之安装路径下(D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)

验证:

  • 进入 d:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite
  • 运行bandwidthTest.exe
  • 输出结果Result = PASS,安装成功
  1. 安装gpu版本的pytorch
    在pytorch官网https://pytorch.org/找到对应的版本,复制指令安装

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装d2l软件包

复制代码
pip install d2l==0.17.6

运行

在pycharm切换项目的虚拟机为d2l,就可以运行了

如果在jupyternotebook中运行,就先用conda激活环境,再用命令行打开Jupyter notebook

相关推荐
亚马逊云开发者27 分钟前
Q CLI助力合合信息实现Aurora的升级运营
人工智能
charlie11451419133 分钟前
如何快速在 VS2026 上使用 C++ 模块 — 完整上手指南
开发语言·c++·笔记·学习·现代c++
涛涛北京40 分钟前
【强化学习实验】- 策略梯度算法
人工智能·算法
Fairy要carry1 小时前
2025/12/15英语打卡
人工智能
weixin_446260851 小时前
《从零开始构建智能体》—— 实践与理论结合的智能体入门指南
人工智能
新加坡内哥谈技术1 小时前
Claude 代理技能:从第一性原理出发的深度解析
人工智能
长空任鸟飞_阿康1 小时前
FastAPI 入门指南
人工智能
Pyeako1 小时前
机器学习之KNN算法
人工智能·算法·机器学习
Mxsoft6191 小时前
我发现知识图谱节点关系缺失致诊断不准,自动关系抽取补全救场
人工智能
可信计算1 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理