动手学习深度学习之环境配置

创建conda虚拟环境

下载anaconda,安装到计算机,修改镜像源到国内

复制代码
show_channel_urls: true
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults

创建一个新的虚拟环境
conda create --name d2l python=3.9 -y
创建完成后,激活虚拟环境
conda activate d2l

安装CPU版本的pytorch

如果只有CPU,则只需要安装cpu版本的pytorch

复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

安装GPU版本的pytorch

如果需要利用GPU来学习,就需要安装GPU版本的Pytorch,

在安装之前需要先配置GPU环境,安装CUDA和CudaNN

  1. 安装CUDA

    输入如下命令查看GPU驱动信息
    nvidia-smi

从官网下载对应版本的安装程序CUDA Toolkit Archive Nvidia Developer

复制代码
https://developer.nvidia.com/cuda-toolkit-archive

安装(推荐自定义安装在有空余的盘中,我的安装地址:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ;D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1 )

验证:输入nvcc --version 进行检查

  1. 安装CudaNN

下载CudaNN

https://developer.nvidia.com/rdp/cudnn-download

将压缩包解压之安装路径下(D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)

验证:

  • 进入 d:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite
  • 运行bandwidthTest.exe
  • 输出结果Result = PASS,安装成功
  1. 安装gpu版本的pytorch
    在pytorch官网https://pytorch.org/找到对应的版本,复制指令安装

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装d2l软件包

复制代码
pip install d2l==0.17.6

运行

在pycharm切换项目的虚拟机为d2l,就可以运行了

如果在jupyternotebook中运行,就先用conda激活环境,再用命令行打开Jupyter notebook

相关推荐
北京耐用通信几秒前
告别“蜘蛛网”布线!耐达讯自动化Profibus六路集线器:电力控制更简单
人工智能·科技·网络协议·自动化·信息与通信
AI营销快线1 分钟前
原圈科技AI营销内容生产助力SaaS企业增长新引擎
人工智能
小徐不会敲代码~1 分钟前
Vue3 学习 4
前端·vue.js·学习
51camera2 分钟前
单色线阵相机结合特殊光源的多项检测解决方案
人工智能·计算机视觉
MarkHD8 分钟前
智能体在车联网中的应用:第5天 车联网导论与体系认知:驶向智能出行的未来
学习
idkmn_9 分钟前
Daily AI 20251219 (PyTorch基础回顾3)
人工智能·pytorch·python·深度学习·神经网络
bulingg11 分钟前
集成模型:gbdt,xgboost,lightgbm,catboost
人工智能·算法·机器学习
d111111111d12 分钟前
编码器测速详情解释:PID闭环控制
笔记·stm32·单片机·嵌入式硬件·学习·算法
我想我不够好。15 分钟前
电工学习 实操考点及打分项
学习
最晚的py20 分钟前
深度学习简介
深度学习