Sklearn逻辑回归

逻辑回归是一种广泛用于分类问题的机器学习算法。在Python中,你可以使用Sklearn库(scikit-learn)来方便地实现逻辑回归。下面是一个简单的例子,展示了如何使用Sklearn进行逻辑回归。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建逻辑回归模型
logreg = LogisticRegression()
# 训练模型
logreg.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = logreg.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们使用了鸢尾花(Iris)数据集,这是一个常用于机器学习入门的数据集,包含了150个样本,每个样本有4个特征,对应于鸢尾花的萼片和花瓣的长度和宽度。数据集被分为三个类别。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个逻辑回归模型。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,实际应用中,你可能需要对数据进行预处理,如特征缩放、特征选择等,并调整模型的参数以达到更好的性能。
相关推荐
伊一大数据&人工智能学习日志6 分钟前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客12311 分钟前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路27 分钟前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
闻道且行之1 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
喝不完一杯咖啡1 小时前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh1 小时前
理解构件的3种分类方法
人工智能·分类·数据挖掘
后端码匠1 小时前
Spring Boot3+Vue2极速整合:10分钟搭建DeepSeek AI对话系统
人工智能·spring boot·后端
用户231434978141 小时前
使用 Trae AI 编程平台生成扫雷游戏
人工智能·设计
神经美学_茂森2 小时前
神经网络防“失忆“秘籍:弹性权重固化如何让AI学会“温故知新“
人工智能·深度学习·神经网络
大囚长2 小时前
AI工作流+专业知识库+系统API的全流程任务自动化
运维·人工智能·自动化