Sklearn逻辑回归

逻辑回归是一种广泛用于分类问题的机器学习算法。在Python中,你可以使用Sklearn库(scikit-learn)来方便地实现逻辑回归。下面是一个简单的例子,展示了如何使用Sklearn进行逻辑回归。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建逻辑回归模型
logreg = LogisticRegression()
# 训练模型
logreg.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = logreg.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们使用了鸢尾花(Iris)数据集,这是一个常用于机器学习入门的数据集,包含了150个样本,每个样本有4个特征,对应于鸢尾花的萼片和花瓣的长度和宽度。数据集被分为三个类别。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个逻辑回归模型。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,实际应用中,你可能需要对数据进行预处理,如特征缩放、特征选择等,并调整模型的参数以达到更好的性能。
相关推荐
Juchecar13 分钟前
给AI装上“手脚”:大模型如何自动执行复杂任务?
人工智能
长鸳词羡23 分钟前
LoRA微调
人工智能·深度学习·机器学习
jerryinwuhan1 小时前
Transformer ViT 架构(转载)
人工智能·深度学习·transformer
码农阿豪1 小时前
【征文计划】码上分享:基于 Rokid CXR-M SDK 构建「AI远程协作助手」实战全记录
人工智能·kotlin·sdk·rokid
mahuan1688881 小时前
ITVDesk
人工智能
聚梦小课堂1 小时前
用于大语言模型后训练阶段的新方法GVPO(Group Variance Policy Optimization)
人工智能·语言模型·后训练
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的互联网运营体系化研究
人工智能·小程序
谢栋_1 小时前
基于 GitLab CI/CD 与 Google Gemini 的 AI Code Review 自动化方案
人工智能·ci/cd·gitlab
koo3641 小时前
李宏毅机器学习笔记17
人工智能·笔记·机器学习
心无旁骛~1 小时前
PIL与OpenCV图像读取的颜色格式陷阱:RGB vs BGR
人工智能·opencv·计算机视觉