Sklearn逻辑回归

逻辑回归是一种广泛用于分类问题的机器学习算法。在Python中,你可以使用Sklearn库(scikit-learn)来方便地实现逻辑回归。下面是一个简单的例子,展示了如何使用Sklearn进行逻辑回归。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建逻辑回归模型
logreg = LogisticRegression()
# 训练模型
logreg.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = logreg.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们使用了鸢尾花(Iris)数据集,这是一个常用于机器学习入门的数据集,包含了150个样本,每个样本有4个特征,对应于鸢尾花的萼片和花瓣的长度和宽度。数据集被分为三个类别。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个逻辑回归模型。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,实际应用中,你可能需要对数据进行预处理,如特征缩放、特征选择等,并调整模型的参数以达到更好的性能。
相关推荐
jarvisuni3 小时前
GLM5带10个题目挑战Claude4.6编程宝座 !
人工智能·ai编程
YunchengLi3 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
开开心心就好3 小时前
一键加密隐藏视频,专属格式播放工具
java·linux·开发语言·网络·人工智能·macos
呆萌很3 小时前
BGR和RGB区别
人工智能
L念安dd3 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python
大模型真好玩4 小时前
大模型训练全流程实战指南工具篇(六)——OCR工具实战指南(以DeepSeek-OCR-2为例)
人工智能·langchain·deepseek
谁不学习揍谁!4 小时前
大数据可视化看板:基于电子竞技行业数据大数据可视化分析(详细源码文档等资料)
人工智能·python·信息可视化·stylus
石逸凡4 小时前
智理资产,拿下中台,攻占锦州
人工智能
Mr_Lucifer4 小时前
Duet Space:快手版的 cowork ?
人工智能·ai编程·产品
文艺倾年4 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法