Sklearn逻辑回归

逻辑回归是一种广泛用于分类问题的机器学习算法。在Python中,你可以使用Sklearn库(scikit-learn)来方便地实现逻辑回归。下面是一个简单的例子,展示了如何使用Sklearn进行逻辑回归。

python 复制代码
# 导入必要的库
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建逻辑回归模型
logreg = LogisticRegression()
# 训练模型
logreg.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = logreg.predict(X_test)
# 计算并打印准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

这个例子中,我们使用了鸢尾花(Iris)数据集,这是一个常用于机器学习入门的数据集,包含了150个样本,每个样本有4个特征,对应于鸢尾花的萼片和花瓣的长度和宽度。数据集被分为三个类别。

代码步骤如下:

  1. 导入必要的库。
  2. 加载数据集。
  3. 将数据集分为训练集和测试集。
  4. 创建一个逻辑回归模型。
  5. 使用训练集数据训练模型。
  6. 用训练好的模型对测试集进行预测。
  7. 计算预测结果的正确率,并打印出来。
    请注意,实际应用中,你可能需要对数据进行预处理,如特征缩放、特征选择等,并调整模型的参数以达到更好的性能。
相关推荐
说私域28 分钟前
社群经济视域下智能名片链动2+1模式商城小程序的商业价值重构
人工智能·小程序·重构·开源
NAGNIP5 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP5 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴6 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维6 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者6 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai6 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃6 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb7 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU7 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习