SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA ( 樽海鞘优化算法 )LSTM 长短期记忆神经网络 结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量分类预测,个数可自行制定)**

  • 归一化训练数据,提升网络泛化性

  • 通过SSA算法优化LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

樽海鞘群算法( salp swarm algorithm,SSA): 是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

**LSTM(Long Short-Term Memory):**是一种长短期记忆网络,是一种特殊的RNN(循环神经网络)。与传统的RNN相比,LSTM更加适用于处理和预测时间序列中间隔较长的重要事件。传统的RNN结构可以看做是多个重复的神经元构成的"回路",每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题,RNN在处理长序列时难以达到很好的性能。

四、完整程序下载:

相关推荐
HyperAI超神经11 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
lambo mercy11 小时前
深度学习3:新冠病毒感染人数预测
人工智能·深度学习
Echo_NGC223711 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
哥布林学者12 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (四)RNN 中的梯度现象
深度学习·ai
雍凉明月夜12 小时前
深度学习网络笔记Ⅳ(Transformer + VIT)
笔记·深度学习·transformer
de之梦-御风14 小时前
【深度学习】模型从训练完成到产线运行的完整使用方式
人工智能·深度学习
rit843249914 小时前
基于MATLAB的SUSAN特征检测算子边缘提取实现
开发语言·matlab
_codemonster14 小时前
深度学习实战(基于pytroch)系列完整目录
人工智能·深度学习
Chris_121915 小时前
Halcon学习笔记-Day6进阶:工业级视觉系统核心技术详解
人工智能·python·深度学习·halcon
t1987512816 小时前
广义预测控制(GPC)实现滞后系统控制 - MATLAB程序
开发语言·matlab