SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA ( 樽海鞘优化算法 )LSTM 长短期记忆神经网络 结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量分类预测,个数可自行制定)**

  • 归一化训练数据,提升网络泛化性

  • 通过SSA算法优化LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

樽海鞘群算法( salp swarm algorithm,SSA): 是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

**LSTM(Long Short-Term Memory):**是一种长短期记忆网络,是一种特殊的RNN(循环神经网络)。与传统的RNN相比,LSTM更加适用于处理和预测时间序列中间隔较长的重要事件。传统的RNN结构可以看做是多个重复的神经元构成的"回路",每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题,RNN在处理长序列时难以达到很好的性能。

四、完整程序下载:

相关推荐
牧歌悠悠4 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
Archie_IT5 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿5 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Watermelo6178 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink8 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计8 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
終不似少年遊*11 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
亲持红叶13 小时前
sklearn中的决策树-分类树:重要参数
决策树·分类·sklearn
lcw_lance14 小时前
人工智能(AI)的不同维度分类
人工智能·分类·数据挖掘
夏莉莉iy14 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer