SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA ( 樽海鞘优化算法 )LSTM 长短期记忆神经网络 结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量分类预测,个数可自行制定)**

  • 归一化训练数据,提升网络泛化性

  • 通过SSA算法优化LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

樽海鞘群算法( salp swarm algorithm,SSA): 是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

**LSTM(Long Short-Term Memory):**是一种长短期记忆网络,是一种特殊的RNN(循环神经网络)。与传统的RNN相比,LSTM更加适用于处理和预测时间序列中间隔较长的重要事件。传统的RNN结构可以看做是多个重复的神经元构成的"回路",每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题,RNN在处理长序列时难以达到很好的性能。

四、完整程序下载:

相关推荐
DatGuy9 分钟前
Week 33: 量子深度学习入门:参数化量子电路与混合模型构建
人工智能·深度学习
biyezuopinvip16 分钟前
基于深度学习的眼底图像分割方法研究与实现(论文)
人工智能·深度学习·毕业设计·论文·毕业论文·基于深度学习的·眼底图像分割方法研究与实现
知乎的哥廷根数学学派24 分钟前
基于物理引导和不确定性量化的轻量化神经网络机械退化预测算法(Python)
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
机器学习之心24 分钟前
CEEMD-KPCA-PINN多变量时序光伏功率预测!互补集合经验模态分解+核主成份降维+物理信息神经网络,MATLAB代码
神经网络·机器学习·matlab·多变量时序光伏功率预测·物理信息神经网络
拉普拉斯妖10825 分钟前
DAY49 CBAM注意力
人工智能·深度学习
阿龙AI日记31 分钟前
YOLO26:全新的视觉模型来了
深度学习·神经网络·yolo·目标检测
2501_9415079433 分钟前
【珠宝识别】使用YOLOv8-HSFPN实现首饰分类检测系统详解
yolo·分类·数据挖掘
jay神33 分钟前
手势识别数据集 - 专业级目标检测训练数据
人工智能·深度学习·yolo·目标检测·计算机视觉
海绵宝宝de派小星35 分钟前
什么是人工智能?AI、机器学习、深度学习的关系
人工智能·深度学习·机器学习·ai
2501_9421917736 分钟前
使用Yolov8-EUCB-SC进行食品包装完整性检测与分类_1
yolo·分类·数据挖掘