SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA ( 樽海鞘优化算法 )LSTM 长短期记忆神经网络 结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量分类预测,个数可自行制定)**

  • 归一化训练数据,提升网络泛化性

  • 通过SSA算法优化LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

樽海鞘群算法( salp swarm algorithm,SSA): 是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

**LSTM(Long Short-Term Memory):**是一种长短期记忆网络,是一种特殊的RNN(循环神经网络)。与传统的RNN相比,LSTM更加适用于处理和预测时间序列中间隔较长的重要事件。传统的RNN结构可以看做是多个重复的神经元构成的"回路",每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题,RNN在处理长序列时难以达到很好的性能。

四、完整程序下载:

相关推荐
HyperAI超神经12 分钟前
12个HPC教程汇总!从入门到实战,覆盖分子模拟/材料计算/生物信息分析等多个领域
图像处理·人工智能·深度学习·生物信息·分子模拟·材料计算·vasp
进来有惊喜39 分钟前
深度学习:迁移学习
python·深度学习
豆芽8191 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
北上ing2 小时前
从FP32到BF16,再到混合精度的全景解析
人工智能·pytorch·深度学习·计算机视觉·stable diffusion
The hopes of the whole village2 小时前
matlab 绘图
开发语言·matlab·信息可视化
蔗理苦2 小时前
2025-04-24 Python&深度学习4—— 计算图与动态图机制
开发语言·pytorch·python·深度学习·计算图
m0_678693332 小时前
深度学习笔记22-RNN心脏病预测(Tensorflow)
笔记·rnn·深度学习
Y1nhl8 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
程高兴12 小时前
基于Matlab的车牌识别系统
开发语言·matlab
鸿蒙布道师12 小时前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt