SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA ( 樽海鞘优化算法 )LSTM 长短期记忆神经网络 结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量分类预测,个数可自行制定)**

  • 归一化训练数据,提升网络泛化性

  • 通过SSA算法优化LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 训练LSTM网络进行回归预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

樽海鞘群算法( salp swarm algorithm,SSA): 是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

**LSTM(Long Short-Term Memory):**是一种长短期记忆网络,是一种特殊的RNN(循环神经网络)。与传统的RNN相比,LSTM更加适用于处理和预测时间序列中间隔较长的重要事件。传统的RNN结构可以看做是多个重复的神经元构成的"回路",每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题,RNN在处理长序列时难以达到很好的性能。

四、完整程序下载:

相关推荐
yugi98783813 分钟前
基于Takens嵌入定理和多种优化算法的混沌序列相空间重构MATLAB实现
算法·matlab·重构
ASD123asfadxv33 分钟前
基于改进Faster R-CNN的鸭蛋质量检测与分类系统_x101-32x8d_fpn_ms-3x_coco模型详解
人工智能·分类·cnn
阿正的梦工坊42 分钟前
WebArena:一个真实的网页环境,用于构建更强大的自主智能体
人工智能·深度学习·机器学习·大模型·llm
qijiabao41131 小时前
深度学习|可变形卷积DCNv3编译安装
人工智能·python·深度学习·机器学习·cuda
TonyLee0171 小时前
卷积操作记录(pytorch)
人工智能·pytorch·深度学习
随风飘摇的土木狗1 小时前
【MATLAB第121期】基于MATLAB的sobol、lhs等17种方法数据抽样插件(含UI界面)
matlab·插件·采样·lhs·数据抽样
AndrewHZ1 小时前
【图像处理基石】如何基于黑白图片恢复出色彩?
图像处理·深度学习·算法·计算机视觉·cv·色彩恢复·deoldify
liliangcsdn1 小时前
LDM潜在扩散模型的探索
人工智能·深度学习
搞科研的小刘选手2 小时前
【神经网络高质量会议】第六届神经网络、信息与通信工程国际学术会议(NNICE 2026)
神经网络·集成电路·学术会议·信号与信息处理·电子与通信工程
CoovallyAIHub2 小时前
当小龙虾算法遇上YOLO:如何提升太阳能电池缺陷检测精度?
深度学习·算法·计算机视觉