ChatGPT编程—实现小工具软件(文件查找和筛选)

ChatGPT编程---实现小工具软件(文件查找和筛选)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:根据特定需求结合通配符和其他条件来进行文件查找和筛选。在这个例子中,我们将创建一个函数find_files,它接受用户输入的目录路径、文件扩展名以及其他条件作为参数,并返回符合条件的文件列表。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后,返回如下结果:

创建自定义函数进行文件查找和筛选:

python 复制代码
import os
import fnmatch

def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)
                
                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue
                
                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue
                
                matched_files.append(file_path)
    
    return matched_files

# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files('path/to/directory', pattern='*.txt', keyword='example')
for file_path in found_files:
    print(file_path)

在上述代码中,find_files函数允许您基于目录路径、文件扩展名、关键字、最小/最大文件大小等条件来定制文件查找和筛选操作。您可以根据实际需求扩展或修改该函数,以满足您对文件查找和筛选的特定需求。

根据自己的需求,对上面的代码进行修改,如下:

python 复制代码
import os
import fnmatch


def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)

                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue

                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue

                matched_files.append(file_path)

    return matched_files

# 定义变量,输入自定义的需求
file_path = input('请输入路径:')
file_type = input('请输入文件类型:')
keyword = input('请输入包含的关键字:')
# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files(file_path, pattern=file_type, keyword=keyword)
for file_path in found_files:
    print(file_path)

这个案例说明了,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
视觉语言导航27 分钟前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux27 分钟前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI35 分钟前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison1 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号1 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
LinkTime_Cloud1 小时前
谷歌引入 AI 反诈系统:利用语言模型分析潜在恶意网站
人工智能·语言模型·自然语言处理
张小九991 小时前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
Panesle1 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
zstar-_1 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
于壮士hoho2 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash