ChatGPT编程—实现小工具软件(文件查找和筛选)

ChatGPT编程---实现小工具软件(文件查找和筛选)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:根据特定需求结合通配符和其他条件来进行文件查找和筛选。在这个例子中,我们将创建一个函数find_files,它接受用户输入的目录路径、文件扩展名以及其他条件作为参数,并返回符合条件的文件列表。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后,返回如下结果:

创建自定义函数进行文件查找和筛选:

python 复制代码
import os
import fnmatch

def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)
                
                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue
                
                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue
                
                matched_files.append(file_path)
    
    return matched_files

# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files('path/to/directory', pattern='*.txt', keyword='example')
for file_path in found_files:
    print(file_path)

在上述代码中,find_files函数允许您基于目录路径、文件扩展名、关键字、最小/最大文件大小等条件来定制文件查找和筛选操作。您可以根据实际需求扩展或修改该函数,以满足您对文件查找和筛选的特定需求。

根据自己的需求,对上面的代码进行修改,如下:

python 复制代码
import os
import fnmatch


def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)

                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue

                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue

                matched_files.append(file_path)

    return matched_files

# 定义变量,输入自定义的需求
file_path = input('请输入路径:')
file_type = input('请输入文件类型:')
keyword = input('请输入包含的关键字:')
# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files(file_path, pattern=file_type, keyword=keyword)
for file_path in found_files:
    print(file_path)

这个案例说明了,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
AKAMAI1 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.3 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight3 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha3 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir4 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王4 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室5 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛115 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI5 小时前
RAG系列(一) 架构基础与原理
人工智能·架构
北邮刘老师6 小时前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网