ChatGPT编程—实现小工具软件(文件查找和筛选)

ChatGPT编程---实现小工具软件(文件查找和筛选)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:根据特定需求结合通配符和其他条件来进行文件查找和筛选。在这个例子中,我们将创建一个函数find_files,它接受用户输入的目录路径、文件扩展名以及其他条件作为参数,并返回符合条件的文件列表。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后,返回如下结果:

创建自定义函数进行文件查找和筛选:

python 复制代码
import os
import fnmatch

def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)
                
                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue
                
                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue
                
                matched_files.append(file_path)
    
    return matched_files

# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files('path/to/directory', pattern='*.txt', keyword='example')
for file_path in found_files:
    print(file_path)

在上述代码中,find_files函数允许您基于目录路径、文件扩展名、关键字、最小/最大文件大小等条件来定制文件查找和筛选操作。您可以根据实际需求扩展或修改该函数,以满足您对文件查找和筛选的特定需求。

根据自己的需求,对上面的代码进行修改,如下:

python 复制代码
import os
import fnmatch


def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)

                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue

                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue

                matched_files.append(file_path)

    return matched_files

# 定义变量,输入自定义的需求
file_path = input('请输入路径:')
file_type = input('请输入文件类型:')
keyword = input('请输入包含的关键字:')
# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files(file_path, pattern=file_type, keyword=keyword)
for file_path in found_files:
    print(file_path)

这个案例说明了,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
Blossom.1182 分钟前
基于机器学习的智能故障预测系统:构建与优化
人工智能·python·深度学习·神经网络·机器学习·分类·tensorflow
DisonTangor18 分钟前
【字节拥抱开源】字节团队开源视频模型 ContentV: 有限算力下的视频生成模型高效训练
人工智能·开源·aigc
春末的南方城市36 分钟前
腾讯开源视频生成工具 HunyuanVideo-Avatar,上传一张图+一段音频,就能让图中的人物、动物甚至虚拟角色“活”过来,开口说话、唱歌、演相声!
人工智能·计算机视觉·自然语言处理·aigc·音视频·视频生成
UQI-LIUWJ38 分钟前
论文笔记:Urban Computing in the Era of Large Language Models
人工智能·语言模型·自然语言处理
张较瘦_39 分钟前
[论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
论文阅读·人工智能·软件工程
yzx99101342 分钟前
基于 PyTorch 和 OpenCV 的实时表情检测系统
人工智能·pytorch·opencv
ICscholar1 小时前
生成对抗网络(GAN)损失函数解读
人工智能·机器学习·生成对抗网络
我不是小upper1 小时前
L1和L2核心区别 !!--part 2
人工智能·深度学习·算法·机器学习
geneculture1 小时前
融智学本体论体系全景图
人工智能·数学建模·融智学的重要应用·道函数·三类思维坐标
柠石榴1 小时前
《机器学习》(周志华)第二章 模型评估与选择
人工智能·机器学习