ChatGPT编程—实现小工具软件(文件查找和筛选)

ChatGPT编程---实现小工具软件(文件查找和筛选)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:根据特定需求结合通配符和其他条件来进行文件查找和筛选。在这个例子中,我们将创建一个函数find_files,它接受用户输入的目录路径、文件扩展名以及其他条件作为参数,并返回符合条件的文件列表。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后,返回如下结果:

创建自定义函数进行文件查找和筛选:

python 复制代码
import os
import fnmatch

def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)
                
                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue
                
                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue
                
                matched_files.append(file_path)
    
    return matched_files

# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files('path/to/directory', pattern='*.txt', keyword='example')
for file_path in found_files:
    print(file_path)

在上述代码中,find_files函数允许您基于目录路径、文件扩展名、关键字、最小/最大文件大小等条件来定制文件查找和筛选操作。您可以根据实际需求扩展或修改该函数,以满足您对文件查找和筛选的特定需求。

根据自己的需求,对上面的代码进行修改,如下:

python 复制代码
import os
import fnmatch


def find_files(directory, pattern='*', keyword=None, min_size=None, max_size=None):
    matched_files = []
    for root, dirs, files in os.walk(directory):
        for file_name in files:
            if fnmatch.fnmatch(file_name, pattern):
                file_path = os.path.join(root, file_name)
                file_size = os.path.getsize(file_path)

                # 根据关键字筛选文件
                if keyword and keyword not in file_name:
                    continue

                # 根据文件大小筛选文件
                if min_size and file_size < min_size:
                    continue
                if max_size and file_size > max_size:
                    continue

                matched_files.append(file_path)

    return matched_files

# 定义变量,输入自定义的需求
file_path = input('请输入路径:')
file_type = input('请输入文件类型:')
keyword = input('请输入包含的关键字:')
# 示例用法:查找目录下所有以 .txt 结尾并包含关键字 'example' 的文件
found_files = find_files(file_path, pattern=file_type, keyword=keyword)
for file_path in found_files:
    print(file_path)

这个案例说明了,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
qzhqbb27 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨1 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041081 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型