ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件)

ChatGPT编程---实现小工具软件(批量替换文本、批量处理图像文件)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:批量处理文件及其内容,例如批量替换文本、批量处理图像文件等。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后返回如下结果:

批量处理文件及其内容:

1. 批量替换文本文件内容
  • 使用Python的fileinput模块结合正则表达式,可以轻松批量替换文本文件中的内容。
python 复制代码
import fileinput
import re

# 批量替换文本文件中的指定内容
def batch_replace_text(file_pattern, search_pattern, replace_text):
    for line in fileinput.input(files=glob.glob(file_pattern), inplace=True):
        print(re.sub(search_pattern, replace_text, line), end='')

# 调用示例:将所有.txt文件中的"old_text"替换为"new_text"
batch_replace_text("*.txt", "old_text", "new_text")

根据ChatGPT返回的结果,进行如下修改并运行,如下所示:

python 复制代码
import fileinput
import re
import glob


# 批量替换文本文件中的指定内容
def batch_replace_text(file_pattern, search_pattern, replace_text):
    for line in fileinput.input(files=glob.glob(file_pattern), inplace=True):
        print(re.sub(search_pattern, replace_text, line), end='')


# 调用示例:将所有.txt文件中的"old_text"替换为"new_text"
batch_replace_text("*.txt", "AI", "人工只能(AI,Artificial Intelligence)")
2. 批量处理图像文件
  • 使用Pillow库(PIL Fork)来批量处理图像文件,例如调整大小、转换格式等操作。
python 复制代码
from PIL import Image
import os

# 批量调整图像大小
def resize_images(input_dir, output_dir, size=(128, 128)):
    os.makedirs(output_dir, exist_ok=True)
    for filename in os.listdir(input_dir):
        if filename.endswith(('.png', '.jpg', '.jpeg')):
            img = Image.open(os.path.join(input_dir, filename))
            img_resized = img.resize(size)
            img_resized.save(os.path.join(output_dir, filename))

# 调用示例:将input_images目录中的所有图片调整为128x128尺寸并保存到output_images目录
resize_images("input_images", "output_images")

根据ChatGPT返回的结果,进行如下修改并运行,如下所示:

python 复制代码
from PIL import Image
import os


# 批量调整图像大小
height = input('请输入图片高度:')
width = input('请输入图片宽度:')


def resize_images(input_dir, output_dir, size=(int(height), int(width))):
    os.makedirs(output_dir, exist_ok=True)
    for filename in os.listdir(input_dir):
        if filename.endswith(('.png', '.jpg', '.jpeg')):
            img = Image.open(os.path.join(input_dir, filename))
            img_resized = img.resize(size)
            img_resized.save(os.path.join(output_dir, filename))


# 调用示例:将input_images目录中的所有图片调整为height*width尺寸并保存到output_images目录
resize_images("input_images", "output_images")

使用上述代码示例,您可以轻松地批量处理文本文件内容或图像文件。根据具体需求可进一步定制功能,并确保在处理大量文件时进行适当优化以提高效率。

还是那句话,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
许泽宇的技术分享3 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳022 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中36 分钟前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙1 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian1 小时前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee1 小时前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域2 小时前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus2 小时前
深度学习篇---Yolov系列
人工智能·深度学习