ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件)

ChatGPT编程---实现小工具软件(批量替换文本、批量处理图像文件)

今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:批量处理文件及其内容,例如批量替换文本、批量处理图像文件等。

环境:Pycharm 2021

系统:Mac OS

向ChatGPT输入如下内容:

ChatGPT收到后返回如下结果:

批量处理文件及其内容:

1. 批量替换文本文件内容
  • 使用Python的fileinput模块结合正则表达式,可以轻松批量替换文本文件中的内容。
python 复制代码
import fileinput
import re

# 批量替换文本文件中的指定内容
def batch_replace_text(file_pattern, search_pattern, replace_text):
    for line in fileinput.input(files=glob.glob(file_pattern), inplace=True):
        print(re.sub(search_pattern, replace_text, line), end='')

# 调用示例:将所有.txt文件中的"old_text"替换为"new_text"
batch_replace_text("*.txt", "old_text", "new_text")

根据ChatGPT返回的结果,进行如下修改并运行,如下所示:

python 复制代码
import fileinput
import re
import glob


# 批量替换文本文件中的指定内容
def batch_replace_text(file_pattern, search_pattern, replace_text):
    for line in fileinput.input(files=glob.glob(file_pattern), inplace=True):
        print(re.sub(search_pattern, replace_text, line), end='')


# 调用示例:将所有.txt文件中的"old_text"替换为"new_text"
batch_replace_text("*.txt", "AI", "人工只能(AI,Artificial Intelligence)")
2. 批量处理图像文件
  • 使用Pillow库(PIL Fork)来批量处理图像文件,例如调整大小、转换格式等操作。
python 复制代码
from PIL import Image
import os

# 批量调整图像大小
def resize_images(input_dir, output_dir, size=(128, 128)):
    os.makedirs(output_dir, exist_ok=True)
    for filename in os.listdir(input_dir):
        if filename.endswith(('.png', '.jpg', '.jpeg')):
            img = Image.open(os.path.join(input_dir, filename))
            img_resized = img.resize(size)
            img_resized.save(os.path.join(output_dir, filename))

# 调用示例:将input_images目录中的所有图片调整为128x128尺寸并保存到output_images目录
resize_images("input_images", "output_images")

根据ChatGPT返回的结果,进行如下修改并运行,如下所示:

python 复制代码
from PIL import Image
import os


# 批量调整图像大小
height = input('请输入图片高度:')
width = input('请输入图片宽度:')


def resize_images(input_dir, output_dir, size=(int(height), int(width))):
    os.makedirs(output_dir, exist_ok=True)
    for filename in os.listdir(input_dir):
        if filename.endswith(('.png', '.jpg', '.jpeg')):
            img = Image.open(os.path.join(input_dir, filename))
            img_resized = img.resize(size)
            img_resized.save(os.path.join(output_dir, filename))


# 调用示例:将input_images目录中的所有图片调整为height*width尺寸并保存到output_images目录
resize_images("input_images", "output_images")

使用上述代码示例,您可以轻松地批量处理文本文件内容或图像文件。根据具体需求可进一步定制功能,并确保在处理大量文件时进行适当优化以提高效率。

还是那句话,AI编程太高效了。用好AI提高效率,提升自我。

相关推荐
翻滚的小@强2 分钟前
数据挖掘笔记:点到线段的距离计算
人工智能·笔记·数据挖掘
weixin_4572971019 分钟前
RAG流程全解析:从数据到精准答案
人工智能
whaosoft-14319 分钟前
51c大模型~合集171
人工智能
arron889933 分钟前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
AI人工智能+2 小时前
一种融合AI与OCR的施工许可证识别技术,提升工程监管效率,实现自动化、精准化处理。
人工智能·自动化·ocr·施工许可证识别
大力水手(Popeye)3 小时前
Pytorch——tensor
人工智能·pytorch·python
ygy.白茶4 小时前
从电影分类到鸢尾花识别
人工智能
AI_gurubar7 小时前
大模型教机器人叠衣服:2025年”语言理解+多模态融合“的智能新篇
人工智能·机器人
XINVRY-FPGA8 小时前
EPM240T100I5N Altera FPGA MAX II CPLD
人工智能·嵌入式硬件·fpga开发·硬件工程·dsp开发·射频工程·fpga
HuggingFace9 小时前
开源开发者须知:欧盟《人工智能法案》对通用人工智能模型的最新要求
人工智能