吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
算法狗214 分钟前
大模型推理中超出训练长度的外推方式有哪些?
人工智能
渡我白衣14 分钟前
数据是燃料:理解数据类型、质量评估与基本预处理
人工智能·深度学习·神经网络·机器学习·自然语言处理·机器人·caffe
Codebee16 分钟前
Ooder A2UI框架开源首发:构建企业级应用的全新选择
java·人工智能·全栈
百泰派克生物科技19 分钟前
串联质量标签(TMT)
人工智能·机器学习·蛋白质组学·蛋白质·质谱
草莓熊Lotso19 分钟前
Linux 实战:从零实现动态进度条(含缓冲区原理与多版本优化)
linux·运维·服务器·c++·人工智能·centos·进度条
YJlio19 分钟前
Contig 学习笔记(13.4):单文件碎片整理工具的原理与基本用法
笔记·学习·stable diffusion
渡我白衣1 小时前
多路转接之epoll:理论篇
人工智能·神经网络·网络协议·tcp/ip·自然语言处理·信息与通信·tcpdump
明月照山海-1 小时前
机器学习周报二十八
人工智能·机器学习
weixin_437497777 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端7 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员