吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
360智汇云7 分钟前
存储压缩:不是“挤水分”,而是让数据“轻装上阵
大数据·人工智能
小熊熊知识库22 分钟前
AI架构详解以及免费AI如何薅
人工智能·python·ai使用
咚咚王者44 分钟前
人工智能之数学基础 信息论:第二章 核心度量
人工智能
Trent19851 小时前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
吾在学习路1 小时前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习
小黄人软件1 小时前
豆包AI手机是未来所有带屏设备的方向,包括POS机。豆包AI手机需要很强的本地算力吗?不需要。
人工智能·智能手机
Salt_07281 小时前
DAY 47 Tensorboard的使用介绍
人工智能·python·深度学习·机器学习
木卫二号Coding1 小时前
第七十篇-ComfyUI+V100-32G+运行SD3.5-文生图
人工智能
Salt_07281 小时前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习