吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
逑之27 分钟前
C语言笔记10:sizeof和strlen,指针与数组
c语言·笔记·算法
saoys30 分钟前
Opencv 学习笔记:创建与原图等尺寸的空白图像
笔记·opencv·学习
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
晓幂6 小时前
【2025】HECTF
笔记·学习·web安全
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习