吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
愤怒的可乐12 分钟前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识2 小时前
AI Agent
人工智能
('-')2 小时前
《从根上理解MySQL是怎样运行的》第十章学习笔记
笔记·学习·mysql
hd51cc2 小时前
MFC学习笔记 对话框
笔记·学习·mfc
猫头虎2 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子2 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.2 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术2 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
卡提西亚2 小时前
数据库笔记-4-SQL语言之DCL
数据库·笔记·sql
β添砖java2 小时前
机器学习初级
人工智能·机器学习