吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
TTGGGFF15 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
UXbot15 小时前
UI设计工具推荐合集
前端·人工智能·ui
kicikng15 小时前
智能体来了(西南总部)实战指南:AI调度官与AI Agent指挥官的Prompt核心逻辑
人工智能·prompt·多智能体系统
抓个马尾女孩15 小时前
为什么self-attention除以根号dk而不是其他值
人工智能·深度学习·机器学习·transformer
叫我辉哥e115 小时前
新手进阶Python:办公看板集成ERP跨系统同步+自动备份+AI异常复盘
开发语言·人工智能·python
Loo国昌15 小时前
【LangChain1.0】第五阶段:RAG高级篇(高级检索与优化)
人工智能·后端·语言模型·架构
伊克罗德信息科技16 小时前
技术分享 | 用Dify搭建个人AI知识助手
人工智能
TOPGUS16 小时前
谷歌发布三大AI购物新功能:从对话式搜索到AI代你下单
大数据·人工智能·搜索引擎·chatgpt·谷歌·seo·数字营销
Godspeed Zhao16 小时前
从零开始学AI4——背景知识3
人工智能