吴恩达机器学习笔记 二十三 倾斜数据集的误差指标 精确率 召回率 精确率与召回率的平衡 F1分数

如果数据集的正例和反例的比例非常倾斜,常用的错误指标如 准确率(accuracy) 并不好用。此时可以用精确率和召回率。

精确率(precision):真阳的样本数/预测为阳的样本数=真阳数/(真阳+假阳)

召回率(recall):真阳/实际阳 = 真阳/(真阳+漏报)

相当于检测出的正有75%是真的正,能检测出的正大概占所有真的正样本的60%

假设 f(x) 大于等于0.5时为1, 小于0.5时为0.如果是一个罕见疾病的预测,我们希望只有在非常确定为 1 时才预测为 1 ,可以提高这个阈值 到 0.9, 此时精确率会提高,但召回率会下降

假设只有非常确定没有病的时候才预测为 0,可以降低这个阈值,此时精确率下降,但召回率会提高。(有点像"不放过一个")

根据精确率和召回率选择算法时,一种方法是计算二者的平均值,但这通常不好。计算F1分数可以结合精确率和召回率选择好算法。

F1分数(F1 score) :更倾向较低的数值,计算公式如下。这个公式在数学中被称为 P 和 R 的调和均值。

相关推荐
AA陈超4 分钟前
ASC学习笔记0020:用于定义角色或Actor的默认属性值
c++·笔记·学习·ue5·虚幻引擎
TsingtaoAI1 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^1 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
IMPYLH1 小时前
Lua 的 collectgarbage 函数
开发语言·笔记·junit·单元测试·lua
檐下翻书1732 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao2 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
思成不止于此2 小时前
深入理解 C++ 多态:从概念到实现的完整解析
开发语言·c++·笔记·学习·多态·c++40周年
搬砖者(视觉算法工程师)3 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
谅望者3 小时前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
CV实验室3 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大