【Educoder数据挖掘实训】用Cosine计算相似度

【Educoder数据挖掘实训】用Cosine计算相似度

开挖挖挖挖

这个题目跟上一个实训很类似,区别在于本关旨在计算文本的相似度。

这里虽然说的是文本相似度但是却没有提及顺序的问题,比如否定句"不喜欢"和疑问句"喜欢不"在本实训中认为是完全相同的。

首先计算方式是基于 j i e b a jieba jieba库中的函数 j i e b a . c u t jieba.cut jieba.cut,把句子拆分成不同的单词,喜欢不和不喜欢都会被拆分成"不"和"喜欢"。

然后将两个句子的词取并集作为词库,而后进行数量统计。

最后用 c o s i n e cosine cosine计算相似度即可。

计算公式为:
c o s = x 1 ∗ x 2 + y 1 ∗ y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 cos = \frac{x_1*x_2 + y_1 * y_ 2}{\sqrt{x_1^2 +y_1^2}\sqrt{x_2^2 + y_2^2}} cos=x12+y12 x22+y22 x1∗x2+y1∗y2

代码如下:

python 复制代码
import numpy as np
import jieba
def cosine_similarity(sentence1: str, sentence2: str) -> float:
    #1.实现文本分词
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]
    seg2 = [word for word in jieba.cut(sentence2)]
    ########## End ##########
    #2.建立词库
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))#建立词库
    ########## End ##########
    word_count_vec_1 = []
    word_count_vec_2 = []
    for word in word_list:
        #3.统计各个文本在词典里出现词的次数
        ########## Begin ##########
        word_count_vec_1.append(seg1.count(word))
        word_count_vec_2.append(seg2.count(word))
        ########## End ##########
    vec_1 = np.array(word_count_vec_1)
    vec_2 = np.array(word_count_vec_2)
    #4.余弦公式
    ########## Begin ##########
    num = vec_1.dot(vec_2.T)
    denom = np.linalg.norm(vec_1) * np.linalg.norm(vec_2)
    cos = num / denom
    ########## End ##########
    return cos
str1="湖南是一个好地方"
str2="湖南好吃的在哪里"
sim1=cosine_similarity(str1,str2)
print(sim1)
相关推荐
顾道长生'1 分钟前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
站大爷IP5 分钟前
Python 办公实战:用 python-docx 自动生成 Word 文档
python
安思派Anspire8 分钟前
再见 RAG?Gemini 2.0 Flash 刚刚 “杀死” 了它!
人工智能
FF-Studio10 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
master-dragon14 分钟前
spring-ai 工作流
人工智能·spring·ai
MO2T31 分钟前
使用 Flask 构建基于 Dify 的企业资金投向与客户分类评估系统
后端·python·语言模型·flask
慢热型网友.34 分钟前
用 Docker 构建你的第一个 Python Flask 程序
python·docker·flask
Naiva34 分钟前
【小技巧】Python + PyCharm 小智AI配置MCP接入点使用说明(内测)( PyInstaller打包成 .exe 可执行文件)
开发语言·python·pycharm
云动雨颤38 分钟前
Python 自动化办公神器|一键转换所有文档为 PDF
运维·python
moonless022244 分钟前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm