【Educoder数据挖掘实训】用Cosine计算相似度

【Educoder数据挖掘实训】用Cosine计算相似度

开挖挖挖挖

这个题目跟上一个实训很类似,区别在于本关旨在计算文本的相似度。

这里虽然说的是文本相似度但是却没有提及顺序的问题,比如否定句"不喜欢"和疑问句"喜欢不"在本实训中认为是完全相同的。

首先计算方式是基于 j i e b a jieba jieba库中的函数 j i e b a . c u t jieba.cut jieba.cut,把句子拆分成不同的单词,喜欢不和不喜欢都会被拆分成"不"和"喜欢"。

然后将两个句子的词取并集作为词库,而后进行数量统计。

最后用 c o s i n e cosine cosine计算相似度即可。

计算公式为:
c o s = x 1 ∗ x 2 + y 1 ∗ y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 cos = \frac{x_1*x_2 + y_1 * y_ 2}{\sqrt{x_1^2 +y_1^2}\sqrt{x_2^2 + y_2^2}} cos=x12+y12 x22+y22 x1∗x2+y1∗y2

代码如下:

python 复制代码
import numpy as np
import jieba
def cosine_similarity(sentence1: str, sentence2: str) -> float:
    #1.实现文本分词
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]
    seg2 = [word for word in jieba.cut(sentence2)]
    ########## End ##########
    #2.建立词库
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))#建立词库
    ########## End ##########
    word_count_vec_1 = []
    word_count_vec_2 = []
    for word in word_list:
        #3.统计各个文本在词典里出现词的次数
        ########## Begin ##########
        word_count_vec_1.append(seg1.count(word))
        word_count_vec_2.append(seg2.count(word))
        ########## End ##########
    vec_1 = np.array(word_count_vec_1)
    vec_2 = np.array(word_count_vec_2)
    #4.余弦公式
    ########## Begin ##########
    num = vec_1.dot(vec_2.T)
    denom = np.linalg.norm(vec_1) * np.linalg.norm(vec_2)
    cos = num / denom
    ########## End ##########
    return cos
str1="湖南是一个好地方"
str2="湖南好吃的在哪里"
sim1=cosine_similarity(str1,str2)
print(sim1)
相关推荐
Aileen_0v0几秒前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
数信云 DCloud几秒前
实力认可 | 通付盾入选《ISC.AI 2024创新能力全景图谱》五项领域
人工智能
itwangyang5202 分钟前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
jerry2011083 分钟前
机器学习常用术语
人工智能·机器学习
落魄君子3 分钟前
GA-BP回归-遗传算法(Genetic Algorithm)和反向传播神经网络(Backpropagation Neural Network)
神经网络·数据挖掘·回归
电报号dapp1195 分钟前
比特币市场震荡:回调背后的机遇与挑战
人工智能·去中心化·区块链·智能合约
AI_NEW_COME15 分钟前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
IT古董21 分钟前
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
人工智能·机器学习·分类
martian66521 分钟前
【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
人工智能·数学·分类·数据挖掘·贝叶斯
mingo_敏22 分钟前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习