【Educoder数据挖掘实训】用Cosine计算相似度

【Educoder数据挖掘实训】用Cosine计算相似度

开挖挖挖挖

这个题目跟上一个实训很类似,区别在于本关旨在计算文本的相似度。

这里虽然说的是文本相似度但是却没有提及顺序的问题,比如否定句"不喜欢"和疑问句"喜欢不"在本实训中认为是完全相同的。

首先计算方式是基于 j i e b a jieba jieba库中的函数 j i e b a . c u t jieba.cut jieba.cut,把句子拆分成不同的单词,喜欢不和不喜欢都会被拆分成"不"和"喜欢"。

然后将两个句子的词取并集作为词库,而后进行数量统计。

最后用 c o s i n e cosine cosine计算相似度即可。

计算公式为:
c o s = x 1 ∗ x 2 + y 1 ∗ y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 cos = \frac{x_1*x_2 + y_1 * y_ 2}{\sqrt{x_1^2 +y_1^2}\sqrt{x_2^2 + y_2^2}} cos=x12+y12 x22+y22 x1∗x2+y1∗y2

代码如下:

python 复制代码
import numpy as np
import jieba
def cosine_similarity(sentence1: str, sentence2: str) -> float:
    #1.实现文本分词
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]
    seg2 = [word for word in jieba.cut(sentence2)]
    ########## End ##########
    #2.建立词库
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))#建立词库
    ########## End ##########
    word_count_vec_1 = []
    word_count_vec_2 = []
    for word in word_list:
        #3.统计各个文本在词典里出现词的次数
        ########## Begin ##########
        word_count_vec_1.append(seg1.count(word))
        word_count_vec_2.append(seg2.count(word))
        ########## End ##########
    vec_1 = np.array(word_count_vec_1)
    vec_2 = np.array(word_count_vec_2)
    #4.余弦公式
    ########## Begin ##########
    num = vec_1.dot(vec_2.T)
    denom = np.linalg.norm(vec_1) * np.linalg.norm(vec_2)
    cos = num / denom
    ########## End ##########
    return cos
str1="湖南是一个好地方"
str2="湖南好吃的在哪里"
sim1=cosine_similarity(str1,str2)
print(sim1)
相关推荐
良策金宝AI10 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据10 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
徐同保10 小时前
python异步函数语法解析,async with ... as ...语法解析
数据库·python·oracle
m***066810 小时前
SpringBoot项目中读取resource目录下的文件(六种方法)
spring boot·python·pycharm
xixixi7777710 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔10 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
eWidget11 小时前
数据可视化进阶:Seaborn 柱状图、散点图与相关性分析
数据库·python·信息可视化·kingbase·数据库平替用金仓·金仓数据库
X54先生(人文科技)11 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家11 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata11 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能