【Educoder数据挖掘实训】用Cosine计算相似度

【Educoder数据挖掘实训】用Cosine计算相似度

开挖挖挖挖

这个题目跟上一个实训很类似,区别在于本关旨在计算文本的相似度。

这里虽然说的是文本相似度但是却没有提及顺序的问题,比如否定句"不喜欢"和疑问句"喜欢不"在本实训中认为是完全相同的。

首先计算方式是基于 j i e b a jieba jieba库中的函数 j i e b a . c u t jieba.cut jieba.cut,把句子拆分成不同的单词,喜欢不和不喜欢都会被拆分成"不"和"喜欢"。

然后将两个句子的词取并集作为词库,而后进行数量统计。

最后用 c o s i n e cosine cosine计算相似度即可。

计算公式为:
c o s = x 1 ∗ x 2 + y 1 ∗ y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 cos = \frac{x_1*x_2 + y_1 * y_ 2}{\sqrt{x_1^2 +y_1^2}\sqrt{x_2^2 + y_2^2}} cos=x12+y12 x22+y22 x1∗x2+y1∗y2

代码如下:

python 复制代码
import numpy as np
import jieba
def cosine_similarity(sentence1: str, sentence2: str) -> float:
    #1.实现文本分词
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]
    seg2 = [word for word in jieba.cut(sentence2)]
    ########## End ##########
    #2.建立词库
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))#建立词库
    ########## End ##########
    word_count_vec_1 = []
    word_count_vec_2 = []
    for word in word_list:
        #3.统计各个文本在词典里出现词的次数
        ########## Begin ##########
        word_count_vec_1.append(seg1.count(word))
        word_count_vec_2.append(seg2.count(word))
        ########## End ##########
    vec_1 = np.array(word_count_vec_1)
    vec_2 = np.array(word_count_vec_2)
    #4.余弦公式
    ########## Begin ##########
    num = vec_1.dot(vec_2.T)
    denom = np.linalg.norm(vec_1) * np.linalg.norm(vec_2)
    cos = num / denom
    ########## End ##########
    return cos
str1="湖南是一个好地方"
str2="湖南好吃的在哪里"
sim1=cosine_similarity(str1,str2)
print(sim1)
相关推荐
新智元4 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒4 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi1122336 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597086 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
用户8356290780516 小时前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
Juchecar6 小时前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh6 小时前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码6 小时前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉