【Educoder数据挖掘实训】用Cosine计算相似度

【Educoder数据挖掘实训】用Cosine计算相似度

开挖挖挖挖

这个题目跟上一个实训很类似,区别在于本关旨在计算文本的相似度。

这里虽然说的是文本相似度但是却没有提及顺序的问题,比如否定句"不喜欢"和疑问句"喜欢不"在本实训中认为是完全相同的。

首先计算方式是基于 j i e b a jieba jieba库中的函数 j i e b a . c u t jieba.cut jieba.cut,把句子拆分成不同的单词,喜欢不和不喜欢都会被拆分成"不"和"喜欢"。

然后将两个句子的词取并集作为词库,而后进行数量统计。

最后用 c o s i n e cosine cosine计算相似度即可。

计算公式为:
c o s = x 1 ∗ x 2 + y 1 ∗ y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 cos = \frac{x_1*x_2 + y_1 * y_ 2}{\sqrt{x_1^2 +y_1^2}\sqrt{x_2^2 + y_2^2}} cos=x12+y12 x22+y22 x1∗x2+y1∗y2

代码如下:

python 复制代码
import numpy as np
import jieba
def cosine_similarity(sentence1: str, sentence2: str) -> float:
    #1.实现文本分词
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]
    seg2 = [word for word in jieba.cut(sentence2)]
    ########## End ##########
    #2.建立词库
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))#建立词库
    ########## End ##########
    word_count_vec_1 = []
    word_count_vec_2 = []
    for word in word_list:
        #3.统计各个文本在词典里出现词的次数
        ########## Begin ##########
        word_count_vec_1.append(seg1.count(word))
        word_count_vec_2.append(seg2.count(word))
        ########## End ##########
    vec_1 = np.array(word_count_vec_1)
    vec_2 = np.array(word_count_vec_2)
    #4.余弦公式
    ########## Begin ##########
    num = vec_1.dot(vec_2.T)
    denom = np.linalg.norm(vec_1) * np.linalg.norm(vec_2)
    cos = num / denom
    ########## End ##########
    return cos
str1="湖南是一个好地方"
str2="湖南好吃的在哪里"
sim1=cosine_similarity(str1,str2)
print(sim1)
相关推荐
风口猪炒股指标4 分钟前
想象一个AI保姆机器人使用场景分析
人工智能·机器人·deepseek·深度思考
没有晚不了安6 分钟前
1.13作业
开发语言·python
Blankspace空白16 分钟前
【小白学AI系列】NLP 核心知识点(八)多头自注意力机制
人工智能·自然语言处理
刀客12316 分钟前
python小项目编程-中级(1、图像处理)
开发语言·图像处理·python
Sodas(填坑中....)24 分钟前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
信阳农夫30 分钟前
python 3.6.8支持的Django版本是多少?
python·django·sqlite
forestsea32 分钟前
DeepSeek 提示词:定义、作用、分类与设计原则
人工智能·prompt·deepseek
maxruan41 分钟前
自动驾驶之BEV概述
人工智能·机器学习·自动驾驶·bev
冷琴199641 分钟前
基于Python+Vue开发的反诈视频宣传管理系统源代码
开发语言·vue.js·python
13631676419侯1 小时前
物联网+人工智能的无限可能
人工智能·物联网