动态规划 Leetcode 322 零钱兑换

零钱兑换

Leetcode 322

学习记录自代码随想录

要点:1.背包容量为amount,物品重量为coins[i],物品价值为1;

2.因为求最小值递推公式为 d p [ j ] = m i n ( d p [ j ] , d p [ j − c o i n s [ i ] ] + 1 ) dp[j] = min(dp[j], dp[j-coins[i]]+1) dp[j]=min(dp[j],dp[j−coins[i]]+1);

3.dp数组初始化,因为是min所以dp[0] = 0, 其余值初始化为UINT_MAX;

4.在迭代判断时要跳过dp[j-coins[i]] == INT_MAX这种情况,并且此时也没有比较的必要,但是不能不加这个条件,因为UINT_MAX+1会回滚到0导致迭代出错;

c 复制代码
unsigned int min(unsigned int a, unsigned int b){
    return a < b ? a : b;
}

int coinChange(int* coins, int coinsSize, int amount) {

    if(amount == 0) return 0;
    
    // int sum = 0;
    // for(int i = 0; i < coinsSize; i++) sum += coins[i];

    // 1.dp[j]代表凑成总金额为j(背包容量)时所需的最少的硬币个数, 物品重量为coins[i], 物品价值为1
    unsigned int dp[amount+1];
    memset(dp, UINT_MAX, sizeof(dp));
    // memset(dp, 0, sizeof(dp));
    
    // 2.递推公式:dp[j] = max(dp[j], dp[j-coins[i]] + 1)
    // 3.dp数组初始化为UINT_MAX
    dp[0] = 0;
    // 4.遍历顺序,每个物品可以无限拿,所以先物品再背包, 均为正向遍历
    for(int i = 0; i < coinsSize; i++){
        for(int j = coins[i]; j < amount+1; j++){
            // 如果dp[j-coins[i]]为UINT_MAX,则UINT_MAX+1会重新变为0导致整体迭代会出错需要注意!
            if(dp[j-coins[i]] != UINT_MAX){  
                dp[j] = min(dp[j], dp[j-coins[i]] + 1);
            }
        }
    }
    // 5.举例推导dp数组
    if(dp[amount]) return dp[amount];
    return -1;

}
相关推荐
梵刹古音18 分钟前
【C语言】 字符数组相关库函数
c语言·开发语言·算法
wfeqhfxz25887827 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
Aaron15888 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
觅特科技-互站8 小时前
陌讯视觉‘动态密度流’模型:亚运场馆到前海政务厅,98.6%聚众事件5秒精准定位|技术拆解+SDK实录
逻辑回归·动态规划
_不会dp不改名_9 小时前
leetcode_3010 将数组分成最小总代价的子数组 I
算法·leetcode·职场和发展
沉睡的无敌雄狮10 小时前
生态即壁垒:陌讯视觉‘开箱即战’背后的OSI七层协同架构
逻辑回归·动态规划
你撅嘴真丑11 小时前
字符环 与 变换的矩阵
算法
早点睡觉好了11 小时前
重排序 (Re-ranking) 算法详解
算法·ai·rag
gihigo199811 小时前
基于全局自适应动态规划(GADP)的MATLAB实现方案
算法
ctyshr12 小时前
C++编译期数学计算
开发语言·c++·算法