动态规划 Leetcode 322 零钱兑换

零钱兑换

Leetcode 322

学习记录自代码随想录

要点:1.背包容量为amount,物品重量为coins[i],物品价值为1;

2.因为求最小值递推公式为 d p [ j ] = m i n ( d p [ j ] , d p [ j − c o i n s [ i ] ] + 1 ) dp[j] = min(dp[j], dp[j-coins[i]]+1) dp[j]=min(dp[j],dp[j−coins[i]]+1);

3.dp数组初始化,因为是min所以dp[0] = 0, 其余值初始化为UINT_MAX;

4.在迭代判断时要跳过dp[j-coins[i]] == INT_MAX这种情况,并且此时也没有比较的必要,但是不能不加这个条件,因为UINT_MAX+1会回滚到0导致迭代出错;

c 复制代码
unsigned int min(unsigned int a, unsigned int b){
    return a < b ? a : b;
}

int coinChange(int* coins, int coinsSize, int amount) {

    if(amount == 0) return 0;
    
    // int sum = 0;
    // for(int i = 0; i < coinsSize; i++) sum += coins[i];

    // 1.dp[j]代表凑成总金额为j(背包容量)时所需的最少的硬币个数, 物品重量为coins[i], 物品价值为1
    unsigned int dp[amount+1];
    memset(dp, UINT_MAX, sizeof(dp));
    // memset(dp, 0, sizeof(dp));
    
    // 2.递推公式:dp[j] = max(dp[j], dp[j-coins[i]] + 1)
    // 3.dp数组初始化为UINT_MAX
    dp[0] = 0;
    // 4.遍历顺序,每个物品可以无限拿,所以先物品再背包, 均为正向遍历
    for(int i = 0; i < coinsSize; i++){
        for(int j = coins[i]; j < amount+1; j++){
            // 如果dp[j-coins[i]]为UINT_MAX,则UINT_MAX+1会重新变为0导致整体迭代会出错需要注意!
            if(dp[j-coins[i]] != UINT_MAX){  
                dp[j] = min(dp[j], dp[j-coins[i]] + 1);
            }
        }
    }
    // 5.举例推导dp数组
    if(dp[amount]) return dp[amount];
    return -1;

}
相关推荐
Coovally AI模型快速验证4 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun4 小时前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
RaymondZhao345 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11335 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
圣保罗的大教堂5 小时前
leetcode 2348. 全 0 子数组的数目 中等
leetcode
啊阿狸不会拉杆6 小时前
《算法导论》第 32 章 - 字符串匹配
开发语言·c++·算法
小学生的信奥之路6 小时前
洛谷P3817题解:贪心算法解决糖果分配问题
c++·算法·贪心算法
你知道网上冲浪吗7 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
地平线开发者8 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
Tisfy9 小时前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率