动态规划 Leetcode 322 零钱兑换

零钱兑换

Leetcode 322

学习记录自代码随想录

要点:1.背包容量为amount,物品重量为coins[i],物品价值为1;

2.因为求最小值递推公式为 d p [ j ] = m i n ( d p [ j ] , d p [ j − c o i n s [ i ] ] + 1 ) dp[j] = min(dp[j], dp[j-coins[i]]+1) dp[j]=min(dp[j],dp[j−coins[i]]+1);

3.dp数组初始化,因为是min所以dp[0] = 0, 其余值初始化为UINT_MAX;

4.在迭代判断时要跳过dp[j-coins[i]] == INT_MAX这种情况,并且此时也没有比较的必要,但是不能不加这个条件,因为UINT_MAX+1会回滚到0导致迭代出错;

c 复制代码
unsigned int min(unsigned int a, unsigned int b){
    return a < b ? a : b;
}

int coinChange(int* coins, int coinsSize, int amount) {

    if(amount == 0) return 0;
    
    // int sum = 0;
    // for(int i = 0; i < coinsSize; i++) sum += coins[i];

    // 1.dp[j]代表凑成总金额为j(背包容量)时所需的最少的硬币个数, 物品重量为coins[i], 物品价值为1
    unsigned int dp[amount+1];
    memset(dp, UINT_MAX, sizeof(dp));
    // memset(dp, 0, sizeof(dp));
    
    // 2.递推公式:dp[j] = max(dp[j], dp[j-coins[i]] + 1)
    // 3.dp数组初始化为UINT_MAX
    dp[0] = 0;
    // 4.遍历顺序,每个物品可以无限拿,所以先物品再背包, 均为正向遍历
    for(int i = 0; i < coinsSize; i++){
        for(int j = coins[i]; j < amount+1; j++){
            // 如果dp[j-coins[i]]为UINT_MAX,则UINT_MAX+1会重新变为0导致整体迭代会出错需要注意!
            if(dp[j-coins[i]] != UINT_MAX){  
                dp[j] = min(dp[j], dp[j-coins[i]] + 1);
            }
        }
    }
    // 5.举例推导dp数组
    if(dp[amount]) return dp[amount];
    return -1;

}
相关推荐
草履虫建模5 小时前
力扣算法 1768. 交替合并字符串
java·开发语言·算法·leetcode·职场和发展·idea·基础
naruto_lnq7 小时前
分布式系统安全通信
开发语言·c++·算法
Jasmine_llq7 小时前
《P3157 [CQOI2011] 动态逆序对》
算法·cdq 分治·动态问题静态化+双向偏序统计·树状数组(高效统计元素大小关系·排序算法(预处理偏序和时间戳)·前缀和(合并单个贡献为总逆序对·动态问题静态化
爱吃rabbit的mq8 小时前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
(❁´◡`❁)Jimmy(❁´◡`❁)8 小时前
Exgcd 学习笔记
笔记·学习·算法
YYuCChi9 小时前
代码随想录算法训练营第三十七天 | 52.携带研究材料(卡码网)、518.零钱兑换||、377.组合总和IV、57.爬楼梯(卡码网)
算法·动态规划
不能隔夜的咖喱9 小时前
牛客网刷题(2)
java·开发语言·算法
VT.馒头9 小时前
【力扣】2721. 并行执行异步函数
前端·javascript·算法·leetcode·typescript
进击的小头9 小时前
实战案例:51单片机低功耗场景下的简易滤波实现
c语言·单片机·算法·51单片机
咖丨喱11 小时前
IP校验和算法解析与实现
网络·tcp/ip·算法