基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真。太阳黑子是人们最早发现也是人们最熟悉的一种太阳表面活动。因为太阳内部磁场发生变化,太阳黑子的数量并不是固定的,它会随着时间的变化而上下波动,每隔一定时间会达到一个最高点,这段时间就被称之为一个太阳黑子周期。太阳黑子的活动呈现周期性变化是由施瓦贝首次发现的。沃尔夫 (R.Wolfer)继而推算出11年的周期规律。实际上,太阳黑子的活动不仅呈11年的周期变化,还有海耳在研究太阳黑子磁场分布时发现的22年周期;格莱斯堡等人发现的80年周期以及蒙德极小期等。由于太阳黑子的活动规律极其复杂,时至今日科学家们仍在努力研究其内在的规律和特性。事实上,对太阳黑子活动规律的研究不仅具有理论意义,而且具有直接的应用需求。太阳黑子的活动呈现周期性变化的,沃尔夫(R.Wolfer)根据在过去的288 年(1700年~1987 年)间每年太阳黑子出现的数量和大小的观测数据推算出11 年的周期规律。我们利用Matlab强大的数据处理与仿真功能,对Wolfer数进行功率谱密度分析从而可以得到对太阳黑子活动周期的结论。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.................................................................................
ind = 0;
kk=300;
for k=1:length(SSN)+Predict_Len; %开始求K 
    if k <= length(SSN)
       Y_predict3(k) = c(1,k) + c(2,k)*k + c(3,k)*yc(k) + c(4,k)*ys(k) + c(5,k)*yc2(k) + c(6,k)*ys2(k) + c(7,k)*yc3(k) + c(8,k)*ys3(k); 
    else    
       %Y_predict3(k) = c(1,end) + c(2,end)*k + c(3,end)*yc(k) + c(4,end)*ys(k) + c(5,end)*yc2(k) + c(6,end)*ys2(k) + c(7,end)*yc3(k) + c(8,end)*ys3(k); 
       
       c0 = mean(c(1,end-kk-1:end-kk));
       c1 = mean(c(2,end-kk-1:end-kk));
       c2 = mean(c(3,end-kk-1:end-kk));
       c3 = mean(c(4,end-kk-1:end-kk));
       c4 = mean(c(5,end-kk-1:end-kk));
       c5 = mean(c(6,end-kk-1:end-kk));
       c6 = mean(c(7,end-kk-1:end-kk));
       c7 = mean(c(8,end-kk-1:end-kk));

       Y_predict3(k) = c0  + c1*k + c2*yc(k) + c3*ys(k) + c4*yc2(k) + c5*ys2(k) + c6*yc3(k) + c7*ys3(k); 
       ind           = ind + 1;
       Ys(ind)       = Y_predict3(k);
    end
end
figure;

plot(YEAR2,SSN,'r');hold off;
legend('预测SSN','实际SSN');
grid on;

%根据预测结果得到下次太阳黑子活动高峰和低峰的时间
%前一次高峰日期为
 XX           = 59;
[Vmax1,Imax1] = max(Ys);
[Vmax2,Imax2] = max(SSN(length(SSN)-XX:length(SSN)));%3100~3160

if Vmax1 > Vmax2
   II   =  Imax1;
   MM   =  Vmax1; 
   time = (length(SSN) + II-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
else
   II   =  Imax2;
   MM   =  Vmax2; 
   time = (length(SSN) + (XX-II)-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
end
Years=time/12;

fprintf('下次高峰期日期为:%d',round(2000 + Years));
fprintf('年\n\n');
fprintf('最大值为:%2.2f\n\n\n\n',MM);

%计算下一次低谷值
[Vmin,Imin] = min(Ys);
fprintf('下次低峰期日期为:%d',round(2012 + Imin/12));
fprintf('年\n\n');
fprintf('最小值为:%2.2f\n\n',Vmin);
16_013m

4.本算法原理

在研究太阳黑子活动时,通常会选择一个合适的物理或统计模型来描述其周期性变化规律。例如,可以选择Hale-Stark定律、Schwabe周期或者某种动力学系统模型等。为了确定模型中的未知参数,我们可以利用历史观测数据采用最小二乘法进行参数辨识。

最小二乘法:

假设我们有一个拟合模型 f(x,θ),其中x 是时间变量,θ=[θ1​,θ2​,...,θn​] 是待估计的模型参数向量。已知一系列太阳黑子活动观测数据yi​ 对应于时间点 xi​ (i=1, 2, ..., m),目标是通过调整参数 θ 来使模型输出与实际观测值之间的误差平方和最小。这个优化问题可以用以下数学公式表示:

参数辨识步骤:

  • 初始化参数:首先为模型参数设定初始值。
  • 构建目标函数:根据上述公式构建误差平方和作为目标函数。
  • 求解最优参数:运用梯度下降法、牛顿法或其他优化算法找到使目标函数极小化的参数值θ^。

模型预测

一旦通过最小二乘法得到最佳参数估计θ^,就可以使用此参数对未来的太阳黑子活动进行预测:

应用实例 以一个简单的线性模型为例(虽然太阳黑子活动通常具有非线性特征):

这里的参数向量θ=[θ0​,θ1​],分别代表截距和斜率。采用最小二乘法就是要找出使得下式最小的 θ0​ 和θ1​:

在实际应用中,针对太阳黑子活动这类复杂的自然现象,可能需要选择更高级别的非线性模型,并结合其他科学理论和观测数据进行分析。同时,对于复杂模型,可能会涉及更多优化方法和技术,如正则化最小二乘法以防止过拟合等问题。

5.完整程序

VVV

相关推荐
醉颜凉21 分钟前
【NOIP提高组】潜伏者
java·c语言·开发语言·c++·算法
lapiii35830 分钟前
图论-代码随想录刷题记录[JAVA]
java·数据结构·算法·图论
Dontla2 小时前
Rust泛型系统类型推导原理(Rust类型推导、泛型类型推导、泛型推导)为什么在某些情况必须手动添加泛型特征约束?(泛型trait约束)
开发语言·算法·rust
Ttang232 小时前
Leetcode:118. 杨辉三角——Java数学法求解
算法·leetcode
喜欢打篮球的普通人2 小时前
rust模式和匹配
java·算法·rust
java小吕布2 小时前
Java中的排序算法:探索与比较
java·后端·算法·排序算法
杜若南星2 小时前
保研考研机试攻略(满分篇):第二章——满分之路上(1)
数据结构·c++·经验分享·笔记·考研·算法·贪心算法
路遇晚风2 小时前
力扣=Mysql-3322- 英超积分榜排名 III(中等)
mysql·算法·leetcode·职场和发展
Neophyte06082 小时前
C++算法练习-day40——617.合并二叉树
开发语言·c++·算法