机器学习 - PyTorch 常见的操作

可以用PyTorch做加减乘除操作

python 复制代码
import torch

tensor_operation = torch.tensor([1,2,3])
print(tensor_operation)

print(tensor_operation + 10)
print(torch.add(tensor_operation, 10))

print(tensor_operation * 10) 
print(torch.multiply(tensor_operation, 10))

print(tensor_operation - 10)
print(tensor_operation / 10)

print(tensor_operation * tensor_operation)

# 输出

0s
tensor_operation = torch.tensor([1,2,3])
print(tensor_operation)

print(tensor_operation + 10)
print(torch.add(tensor_operation, 10))

print(tensor_operation * 10) 
print(torch.multiply(tensor_operation, 10))

print(tensor_operation - 10)

tensor([1, 2, 3])
tensor([11, 12, 13])
tensor([11, 12, 13])
tensor([10, 20, 30])
tensor([10, 20, 30])
tensor([-9, -8, -7])
tensor([0.1000, 0.2000, 0.3000])
tensor([1, 4, 9])

矩阵相乘

One of the most common operations in machine learning and deep learning algorithms (like neural networks) is matrix multiplication.

做矩阵相乘的规则:

python 复制代码
(3,2) * (3,2) => 不符合条件

(2,3) * (3,2) = (2,2)

(3,2) * (2,3) = (3,3)

在 PyTorch 里,可以使用 torch.matmul() 方法。

python 复制代码
tensor_matrix = torch.tensor([1,2,3])
print(tensor_matrix * tensor_matrix)
print(torch.matmul(tensor_matrix, tensor_matrix))
print(tensor_matrix.matmul(tensor_matrix))

# 结果
tensor([1, 4, 9])
tensor(14)
tensor(14)
Operation Calculation Code
Element-wise multiplication [11, 22, 3*3] = [1, 4, 9] tensor * tensor
Matrix multiplication [11 + 22 + 3*3] = [14] tensor.matmul(tensor)

都看到这里了,给个赞咯~

相关推荐
说私域1 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr1 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆6 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠15 分钟前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
老艾的AI世界28 分钟前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
翔云API1 小时前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境1 小时前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步1 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Qspace丨轻空间2 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐